Filling or reading a multivariate polynomial with the multipol package
This code does not work:
library(multipol)
xyz <- function(px,py,pz,coef){
A <- array(0, c(px+1,py+1,pz+1))
P <- as.multipol(A)
P[px,py,pz] <- coef
P
}
> xyz(1,0,0,1)
Error in eval(expr, p) : objet 'px' introuvable
Show Traceback:
7.
eval(expr, p)
6.
eval(expr, p)
5.
eval.parent(ii, 3)
4.
.handleTheOffset(mc, dim, offset, dn)
3.
`[<-.multipol`(`*tmp*`, px, py, pz, value = 1)
2.
`[<-`(`*tmp*`, px, py, pz, value = 1)
1.
xyz(1, 0, 0, 1)
I have found this workaround:
xyz <- function(px,py,pz,coef){
A <- array(0, c(px+1,py+1,pz+1))
P <- as.multipol(A)
f <- function(){
P[px,py,pz] <- coef
P
}
f()
}
> xyz(1,0,0,1)
, , z^0
y^0
x^0 0
x^1 1
Nice? Hmm, wait. Now I have this function in a package:
representation <- function(P){
monomials <- which(P!=0, arr.ind = TRUE) - 1
kmax <- max(rowSums(monomials))
allDegrees <- degreesTable(kmax)
degrees <- row.match(as.data.frame(monomials), allDegrees)
coefficients <- apply(monomials, 1, function(ijk){
f <- function() P[ijk[1],ijk[2],ijk[3]]
f()
})
list(degrees=degrees, coefficients=coefficients)
}
> representation(P)
Error in eval(mc) : objet 'ijk' introuvable
However the trick works when it is not inside a function. This works:
coefficients <- apply(monomials, 1, function(ijk){
f <- function() P[ijk[1],ijk[2],ijk[3]]
f()
})
The traceback:
8.
eval(mc)
7.
eval(mc)
6.
`[.multipol`(P, ijk[1], ijk[2], ijk[3]) at representation.R#38
5.
P[ijk[1], ijk[2], ijk[3]] at representation.R#38
4.
f() at representation.R#39
3.
FUN(newX[, i], ...)
2.
apply(monomials, 1, function(ijk) {
f <- function() P[ijk[1], ijk[2], ijk[3]]
f()
}) at representation.R#37
1.
representation(P)
How should I do? Any trick? I don't really understand code which uses eval.parent
.
EDIT
I've found a solution:
coefficients <- apply(monomials, 1, function(ijk){
ijk <<- ijk
P[ijk[1],ijk[2],ijk[3]]
})
I'm still interested in a better solution and an explanation.
EDIT
Easier:
coefficients <- c(P[monomials])
But I'm still interested...
r function
add a comment |
This code does not work:
library(multipol)
xyz <- function(px,py,pz,coef){
A <- array(0, c(px+1,py+1,pz+1))
P <- as.multipol(A)
P[px,py,pz] <- coef
P
}
> xyz(1,0,0,1)
Error in eval(expr, p) : objet 'px' introuvable
Show Traceback:
7.
eval(expr, p)
6.
eval(expr, p)
5.
eval.parent(ii, 3)
4.
.handleTheOffset(mc, dim, offset, dn)
3.
`[<-.multipol`(`*tmp*`, px, py, pz, value = 1)
2.
`[<-`(`*tmp*`, px, py, pz, value = 1)
1.
xyz(1, 0, 0, 1)
I have found this workaround:
xyz <- function(px,py,pz,coef){
A <- array(0, c(px+1,py+1,pz+1))
P <- as.multipol(A)
f <- function(){
P[px,py,pz] <- coef
P
}
f()
}
> xyz(1,0,0,1)
, , z^0
y^0
x^0 0
x^1 1
Nice? Hmm, wait. Now I have this function in a package:
representation <- function(P){
monomials <- which(P!=0, arr.ind = TRUE) - 1
kmax <- max(rowSums(monomials))
allDegrees <- degreesTable(kmax)
degrees <- row.match(as.data.frame(monomials), allDegrees)
coefficients <- apply(monomials, 1, function(ijk){
f <- function() P[ijk[1],ijk[2],ijk[3]]
f()
})
list(degrees=degrees, coefficients=coefficients)
}
> representation(P)
Error in eval(mc) : objet 'ijk' introuvable
However the trick works when it is not inside a function. This works:
coefficients <- apply(monomials, 1, function(ijk){
f <- function() P[ijk[1],ijk[2],ijk[3]]
f()
})
The traceback:
8.
eval(mc)
7.
eval(mc)
6.
`[.multipol`(P, ijk[1], ijk[2], ijk[3]) at representation.R#38
5.
P[ijk[1], ijk[2], ijk[3]] at representation.R#38
4.
f() at representation.R#39
3.
FUN(newX[, i], ...)
2.
apply(monomials, 1, function(ijk) {
f <- function() P[ijk[1], ijk[2], ijk[3]]
f()
}) at representation.R#37
1.
representation(P)
How should I do? Any trick? I don't really understand code which uses eval.parent
.
EDIT
I've found a solution:
coefficients <- apply(monomials, 1, function(ijk){
ijk <<- ijk
P[ijk[1],ijk[2],ijk[3]]
})
I'm still interested in a better solution and an explanation.
EDIT
Easier:
coefficients <- c(P[monomials])
But I'm still interested...
r function
add a comment |
This code does not work:
library(multipol)
xyz <- function(px,py,pz,coef){
A <- array(0, c(px+1,py+1,pz+1))
P <- as.multipol(A)
P[px,py,pz] <- coef
P
}
> xyz(1,0,0,1)
Error in eval(expr, p) : objet 'px' introuvable
Show Traceback:
7.
eval(expr, p)
6.
eval(expr, p)
5.
eval.parent(ii, 3)
4.
.handleTheOffset(mc, dim, offset, dn)
3.
`[<-.multipol`(`*tmp*`, px, py, pz, value = 1)
2.
`[<-`(`*tmp*`, px, py, pz, value = 1)
1.
xyz(1, 0, 0, 1)
I have found this workaround:
xyz <- function(px,py,pz,coef){
A <- array(0, c(px+1,py+1,pz+1))
P <- as.multipol(A)
f <- function(){
P[px,py,pz] <- coef
P
}
f()
}
> xyz(1,0,0,1)
, , z^0
y^0
x^0 0
x^1 1
Nice? Hmm, wait. Now I have this function in a package:
representation <- function(P){
monomials <- which(P!=0, arr.ind = TRUE) - 1
kmax <- max(rowSums(monomials))
allDegrees <- degreesTable(kmax)
degrees <- row.match(as.data.frame(monomials), allDegrees)
coefficients <- apply(monomials, 1, function(ijk){
f <- function() P[ijk[1],ijk[2],ijk[3]]
f()
})
list(degrees=degrees, coefficients=coefficients)
}
> representation(P)
Error in eval(mc) : objet 'ijk' introuvable
However the trick works when it is not inside a function. This works:
coefficients <- apply(monomials, 1, function(ijk){
f <- function() P[ijk[1],ijk[2],ijk[3]]
f()
})
The traceback:
8.
eval(mc)
7.
eval(mc)
6.
`[.multipol`(P, ijk[1], ijk[2], ijk[3]) at representation.R#38
5.
P[ijk[1], ijk[2], ijk[3]] at representation.R#38
4.
f() at representation.R#39
3.
FUN(newX[, i], ...)
2.
apply(monomials, 1, function(ijk) {
f <- function() P[ijk[1], ijk[2], ijk[3]]
f()
}) at representation.R#37
1.
representation(P)
How should I do? Any trick? I don't really understand code which uses eval.parent
.
EDIT
I've found a solution:
coefficients <- apply(monomials, 1, function(ijk){
ijk <<- ijk
P[ijk[1],ijk[2],ijk[3]]
})
I'm still interested in a better solution and an explanation.
EDIT
Easier:
coefficients <- c(P[monomials])
But I'm still interested...
r function
This code does not work:
library(multipol)
xyz <- function(px,py,pz,coef){
A <- array(0, c(px+1,py+1,pz+1))
P <- as.multipol(A)
P[px,py,pz] <- coef
P
}
> xyz(1,0,0,1)
Error in eval(expr, p) : objet 'px' introuvable
Show Traceback:
7.
eval(expr, p)
6.
eval(expr, p)
5.
eval.parent(ii, 3)
4.
.handleTheOffset(mc, dim, offset, dn)
3.
`[<-.multipol`(`*tmp*`, px, py, pz, value = 1)
2.
`[<-`(`*tmp*`, px, py, pz, value = 1)
1.
xyz(1, 0, 0, 1)
I have found this workaround:
xyz <- function(px,py,pz,coef){
A <- array(0, c(px+1,py+1,pz+1))
P <- as.multipol(A)
f <- function(){
P[px,py,pz] <- coef
P
}
f()
}
> xyz(1,0,0,1)
, , z^0
y^0
x^0 0
x^1 1
Nice? Hmm, wait. Now I have this function in a package:
representation <- function(P){
monomials <- which(P!=0, arr.ind = TRUE) - 1
kmax <- max(rowSums(monomials))
allDegrees <- degreesTable(kmax)
degrees <- row.match(as.data.frame(monomials), allDegrees)
coefficients <- apply(monomials, 1, function(ijk){
f <- function() P[ijk[1],ijk[2],ijk[3]]
f()
})
list(degrees=degrees, coefficients=coefficients)
}
> representation(P)
Error in eval(mc) : objet 'ijk' introuvable
However the trick works when it is not inside a function. This works:
coefficients <- apply(monomials, 1, function(ijk){
f <- function() P[ijk[1],ijk[2],ijk[3]]
f()
})
The traceback:
8.
eval(mc)
7.
eval(mc)
6.
`[.multipol`(P, ijk[1], ijk[2], ijk[3]) at representation.R#38
5.
P[ijk[1], ijk[2], ijk[3]] at representation.R#38
4.
f() at representation.R#39
3.
FUN(newX[, i], ...)
2.
apply(monomials, 1, function(ijk) {
f <- function() P[ijk[1], ijk[2], ijk[3]]
f()
}) at representation.R#37
1.
representation(P)
How should I do? Any trick? I don't really understand code which uses eval.parent
.
EDIT
I've found a solution:
coefficients <- apply(monomials, 1, function(ijk){
ijk <<- ijk
P[ijk[1],ijk[2],ijk[3]]
})
I'm still interested in a better solution and an explanation.
EDIT
Easier:
coefficients <- c(P[monomials])
But I'm still interested...
r function
r function
edited Nov 20 '18 at 8:57
Stéphane Laurent
asked Nov 20 '18 at 8:13
Stéphane LaurentStéphane Laurent
12.7k65392
12.7k65392
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53388730%2ffilling-or-reading-a-multivariate-polynomial-with-the-multipol-package%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53388730%2ffilling-or-reading-a-multivariate-polynomial-with-the-multipol-package%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown