How to solve the limit $limlimits_{xto infty} (x arctan x - frac{xpi}{2})$












0












$begingroup$


Next week I have a math exam. While I was doing some exercises I came across this interesting limit:



$limlimits_{xto infty} (x arctan x - frac{xpi}{2})$



After struggling a lot, I decided to calculate this limit using my calculator. The answer turns out to be $-1$. The problem is that I don't know how to calculate this limit without a calculator. I tried using L'Hôpital's rule after converting the expression to a fraction. My steps:



$limlimits_{xto infty} (x arctan x - frac{xpi}{2}) = limlimits_{xto infty} frac{2x^2arctan x - x^2pi}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{4xarctan x - frac{2}{x^2+1}-2pi x+2}{2} = limlimits_{xto infty} frac{4x^2arctan x - frac{2x}{x^2+1}-2pi x^2+2x}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{8xarctan x - frac{2x^2+6}{(x^2+1)^2}-4pi x+6}{2} = dots$



This keeps going on without an end, I also don't see where I can simplify the expression when using L'Hôpital's rule. Am I missing a step or am I using the wrong method? What method can be used instead?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Next week I have a math exam. While I was doing some exercises I came across this interesting limit:



    $limlimits_{xto infty} (x arctan x - frac{xpi}{2})$



    After struggling a lot, I decided to calculate this limit using my calculator. The answer turns out to be $-1$. The problem is that I don't know how to calculate this limit without a calculator. I tried using L'Hôpital's rule after converting the expression to a fraction. My steps:



    $limlimits_{xto infty} (x arctan x - frac{xpi}{2}) = limlimits_{xto infty} frac{2x^2arctan x - x^2pi}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{4xarctan x - frac{2}{x^2+1}-2pi x+2}{2} = limlimits_{xto infty} frac{4x^2arctan x - frac{2x}{x^2+1}-2pi x^2+2x}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{8xarctan x - frac{2x^2+6}{(x^2+1)^2}-4pi x+6}{2} = dots$



    This keeps going on without an end, I also don't see where I can simplify the expression when using L'Hôpital's rule. Am I missing a step or am I using the wrong method? What method can be used instead?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Next week I have a math exam. While I was doing some exercises I came across this interesting limit:



      $limlimits_{xto infty} (x arctan x - frac{xpi}{2})$



      After struggling a lot, I decided to calculate this limit using my calculator. The answer turns out to be $-1$. The problem is that I don't know how to calculate this limit without a calculator. I tried using L'Hôpital's rule after converting the expression to a fraction. My steps:



      $limlimits_{xto infty} (x arctan x - frac{xpi}{2}) = limlimits_{xto infty} frac{2x^2arctan x - x^2pi}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{4xarctan x - frac{2}{x^2+1}-2pi x+2}{2} = limlimits_{xto infty} frac{4x^2arctan x - frac{2x}{x^2+1}-2pi x^2+2x}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{8xarctan x - frac{2x^2+6}{(x^2+1)^2}-4pi x+6}{2} = dots$



      This keeps going on without an end, I also don't see where I can simplify the expression when using L'Hôpital's rule. Am I missing a step or am I using the wrong method? What method can be used instead?










      share|cite|improve this question









      $endgroup$




      Next week I have a math exam. While I was doing some exercises I came across this interesting limit:



      $limlimits_{xto infty} (x arctan x - frac{xpi}{2})$



      After struggling a lot, I decided to calculate this limit using my calculator. The answer turns out to be $-1$. The problem is that I don't know how to calculate this limit without a calculator. I tried using L'Hôpital's rule after converting the expression to a fraction. My steps:



      $limlimits_{xto infty} (x arctan x - frac{xpi}{2}) = limlimits_{xto infty} frac{2x^2arctan x - x^2pi}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{4xarctan x - frac{2}{x^2+1}-2pi x+2}{2} = limlimits_{xto infty} frac{4x^2arctan x - frac{2x}{x^2+1}-2pi x^2+2x}{2x} stackrel{(H)}{=} limlimits_{xto infty} frac{8xarctan x - frac{2x^2+6}{(x^2+1)^2}-4pi x+6}{2} = dots$



      This keeps going on without an end, I also don't see where I can simplify the expression when using L'Hôpital's rule. Am I missing a step or am I using the wrong method? What method can be used instead?







      calculus limits trigonometry infinity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 2 at 21:55









      MichielvkMichielvk

      1065




      1065






















          3 Answers
          3






          active

          oldest

          votes


















          7












          $begingroup$

          Observe
          begin{align}
          lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
          end{align}






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              You can do the substitution $x=1/t$, recalling that, for $t>0$,
              $$
              arctanfrac{1}{t}=frac{pi}{2}-arctan t
              $$

              Thus the limit becomes
              $$
              lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
              $$

              Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
              $$
              lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
              $$

              This is the reciprocal of the derivative at $pi/2$ of the cotangent.






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060021%2fhow-to-solve-the-limit-lim-limits-x-to-infty-x-arctan-x-fracx-pi2%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                7












                $begingroup$

                Observe
                begin{align}
                lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
                end{align}






                share|cite|improve this answer









                $endgroup$


















                  7












                  $begingroup$

                  Observe
                  begin{align}
                  lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
                  end{align}






                  share|cite|improve this answer









                  $endgroup$
















                    7












                    7








                    7





                    $begingroup$

                    Observe
                    begin{align}
                    lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
                    end{align}






                    share|cite|improve this answer









                    $endgroup$



                    Observe
                    begin{align}
                    lim_{xrightarrow infty} xarctan x-xfrac{pi}{2}=lim_{xrightarrowinfty}frac{arctan x-frac{pi}{2}}{x^{-1}} = lim_{xrightarrow infty} frac{frac{1}{1+x^2}}{-x^{-2}}=-1
                    end{align}







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 2 at 22:01









                    Jacky ChongJacky Chong

                    17.9k21128




                    17.9k21128























                        1












                        $begingroup$

                        If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$






                            share|cite|improve this answer









                            $endgroup$



                            If you know that $lim_{xto+infty}arctan x = pi/2$, then factoring out $x$ in your original limit you would get a $+infty cdot 0$. You want to apply L'Hospital's Rule. Motivated by this, we do $$lim_{xto +infty} left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} xleft(arctan x - frac{pi}{2}right) = lim_{x to infty} frac{arctan x - (pi/2)}{1/x}.$$Now apply L'Hospital to get $$lim_{x to +infty}left(xarctan x - frac{xpi}{2}right) = lim_{xto +infty} frac{1/(1+x^2)}{-1/x^2} = -lim_{x to +infty}frac{x^2}{1+x^2} = -1.$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 2 at 22:03









                            Ivo TerekIvo Terek

                            45.4k952141




                            45.4k952141























                                0












                                $begingroup$

                                You can do the substitution $x=1/t$, recalling that, for $t>0$,
                                $$
                                arctanfrac{1}{t}=frac{pi}{2}-arctan t
                                $$

                                Thus the limit becomes
                                $$
                                lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
                                $$

                                Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
                                $$
                                lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
                                $$

                                This is the reciprocal of the derivative at $pi/2$ of the cotangent.






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  You can do the substitution $x=1/t$, recalling that, for $t>0$,
                                  $$
                                  arctanfrac{1}{t}=frac{pi}{2}-arctan t
                                  $$

                                  Thus the limit becomes
                                  $$
                                  lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
                                  $$

                                  Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
                                  $$
                                  lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
                                  $$

                                  This is the reciprocal of the derivative at $pi/2$ of the cotangent.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    You can do the substitution $x=1/t$, recalling that, for $t>0$,
                                    $$
                                    arctanfrac{1}{t}=frac{pi}{2}-arctan t
                                    $$

                                    Thus the limit becomes
                                    $$
                                    lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
                                    $$

                                    Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
                                    $$
                                    lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
                                    $$

                                    This is the reciprocal of the derivative at $pi/2$ of the cotangent.






                                    share|cite|improve this answer









                                    $endgroup$



                                    You can do the substitution $x=1/t$, recalling that, for $t>0$,
                                    $$
                                    arctanfrac{1}{t}=frac{pi}{2}-arctan t
                                    $$

                                    Thus the limit becomes
                                    $$
                                    lim_{tto0^+}left(frac{1}{t}frac{pi}{2}-frac{1}{t}arctan t-frac{1}{t}frac{pi}{2}right)=lim_{tto0^+}-frac{arctan t}{t}
                                    $$

                                    Alternatively, substitute $u=arctan x$, so $x=tan u$ and the limit becomes
                                    $$
                                    lim_{utopi/2^-}(u-pi/2)tan u=lim_{utopi/2^-}frac{u-pi/2}{cot u}
                                    $$

                                    This is the reciprocal of the derivative at $pi/2$ of the cotangent.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Jan 2 at 22:41









                                    egregegreg

                                    180k1485202




                                    180k1485202






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060021%2fhow-to-solve-the-limit-lim-limits-x-to-infty-x-arctan-x-fracx-pi2%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        'app-layout' is not a known element: how to share Component with different Modules

                                        android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                        WPF add header to Image with URL pettitions [duplicate]