If $A=A^2$ is then $A^T A = A$?
$begingroup$
I know that for a matrix $A$:
If $A^TA = A$ then $A=A^2$
but is it if and only if? I mean:
is this true that "If $A=A^2$ then $A^TA = A$"?
linear-algebra matrices symmetric-matrices transpose
$endgroup$
add a comment |
$begingroup$
I know that for a matrix $A$:
If $A^TA = A$ then $A=A^2$
but is it if and only if? I mean:
is this true that "If $A=A^2$ then $A^TA = A$"?
linear-algebra matrices symmetric-matrices transpose
$endgroup$
add a comment |
$begingroup$
I know that for a matrix $A$:
If $A^TA = A$ then $A=A^2$
but is it if and only if? I mean:
is this true that "If $A=A^2$ then $A^TA = A$"?
linear-algebra matrices symmetric-matrices transpose
$endgroup$
I know that for a matrix $A$:
If $A^TA = A$ then $A=A^2$
but is it if and only if? I mean:
is this true that "If $A=A^2$ then $A^TA = A$"?
linear-algebra matrices symmetric-matrices transpose
linear-algebra matrices symmetric-matrices transpose
edited Jan 2 at 18:53


greedoid
38.7k114797
38.7k114797
asked Jan 2 at 18:27


PeymanPeyman
1089
1089
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The answer is no.
Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have
$$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$
$endgroup$
add a comment |
$begingroup$
What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$
$endgroup$
add a comment |
$begingroup$
Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$
So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.
If $det(A)=0$ then examples show that answer is negative.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059796%2fif-a-a2-is-then-at-a-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer is no.
Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have
$$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$
$endgroup$
add a comment |
$begingroup$
The answer is no.
Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have
$$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$
$endgroup$
add a comment |
$begingroup$
The answer is no.
Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have
$$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$
$endgroup$
The answer is no.
Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have
$$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$
answered Jan 2 at 18:38
mechanodroidmechanodroid
27.1k62446
27.1k62446
add a comment |
add a comment |
$begingroup$
What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$
$endgroup$
add a comment |
$begingroup$
What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$
$endgroup$
add a comment |
$begingroup$
What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$
$endgroup$
What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$
answered Jan 2 at 18:37


Ángel Mario GallegosÁngel Mario Gallegos
18.5k11230
18.5k11230
add a comment |
add a comment |
$begingroup$
Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$
So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.
If $det(A)=0$ then examples show that answer is negative.
$endgroup$
add a comment |
$begingroup$
Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$
So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.
If $det(A)=0$ then examples show that answer is negative.
$endgroup$
add a comment |
$begingroup$
Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$
So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.
If $det(A)=0$ then examples show that answer is negative.
$endgroup$
Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$
So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.
If $det(A)=0$ then examples show that answer is negative.
answered Jan 2 at 18:44


greedoidgreedoid
38.7k114797
38.7k114797
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059796%2fif-a-a2-is-then-at-a-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown