If $A=A^2$ is then $A^T A = A$?












3












$begingroup$


I know that for a matrix $A$:




If $A^TA = A$ then $A=A^2$




but is it if and only if? I mean:




is this true that "If $A=A^2$ then $A^TA = A$"?











share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    I know that for a matrix $A$:




    If $A^TA = A$ then $A=A^2$




    but is it if and only if? I mean:




    is this true that "If $A=A^2$ then $A^TA = A$"?











    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      I know that for a matrix $A$:




      If $A^TA = A$ then $A=A^2$




      but is it if and only if? I mean:




      is this true that "If $A=A^2$ then $A^TA = A$"?











      share|cite|improve this question











      $endgroup$




      I know that for a matrix $A$:




      If $A^TA = A$ then $A=A^2$




      but is it if and only if? I mean:




      is this true that "If $A=A^2$ then $A^TA = A$"?








      linear-algebra matrices symmetric-matrices transpose






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 2 at 18:53









      greedoid

      38.7k114797




      38.7k114797










      asked Jan 2 at 18:27









      PeymanPeyman

      1089




      1089






















          3 Answers
          3






          active

          oldest

          votes


















          7












          $begingroup$

          The answer is no.



          Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have



          $$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
          but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$






          share|cite|improve this answer









          $endgroup$





















            5












            $begingroup$

            What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$






            share|cite|improve this answer









            $endgroup$





















              3












              $begingroup$

              Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$



              So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.



              If $det(A)=0$ then examples show that answer is negative.






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059796%2fif-a-a2-is-then-at-a-a%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                7












                $begingroup$

                The answer is no.



                Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have



                $$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
                but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$






                share|cite|improve this answer









                $endgroup$


















                  7












                  $begingroup$

                  The answer is no.



                  Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have



                  $$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
                  but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$






                  share|cite|improve this answer









                  $endgroup$
















                    7












                    7








                    7





                    $begingroup$

                    The answer is no.



                    Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have



                    $$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
                    but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$






                    share|cite|improve this answer









                    $endgroup$



                    The answer is no.



                    Consider $A = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}$. We have



                    $$A^2 = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = A$$
                    but $$A^TA = begin{bmatrix} 1 & 0 \ -1 & 0 end{bmatrix}begin{bmatrix} 1 & -1 \ 0 & 0 end{bmatrix} = begin{bmatrix} 1 & -1 \ -1 & 1 end{bmatrix} ne A$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 2 at 18:38









                    mechanodroidmechanodroid

                    27.1k62446




                    27.1k62446























                        5












                        $begingroup$

                        What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$






                        share|cite|improve this answer









                        $endgroup$


















                          5












                          $begingroup$

                          What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$






                          share|cite|improve this answer









                          $endgroup$
















                            5












                            5








                            5





                            $begingroup$

                            What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$






                            share|cite|improve this answer









                            $endgroup$



                            What about of $A=begin{bmatrix} 1&1\0&0end{bmatrix}large{?}$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 2 at 18:37









                            Ángel Mario GallegosÁngel Mario Gallegos

                            18.5k11230




                            18.5k11230























                                3












                                $begingroup$

                                Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$



                                So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.



                                If $det(A)=0$ then examples show that answer is negative.






                                share|cite|improve this answer









                                $endgroup$


















                                  3












                                  $begingroup$

                                  Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$



                                  So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.



                                  If $det(A)=0$ then examples show that answer is negative.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    3












                                    3








                                    3





                                    $begingroup$

                                    Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$



                                    So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.



                                    If $det(A)=0$ then examples show that answer is negative.






                                    share|cite|improve this answer









                                    $endgroup$



                                    Since $$det (A)^2 = det (A)det (A) = det (A^2)= det (A) implies det (A)in{0,1}$$



                                    So if $det (A)= 1$ then exsist $A^{-1}$ so $A = I$ and the answer is yes.



                                    If $det(A)=0$ then examples show that answer is negative.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Jan 2 at 18:44









                                    greedoidgreedoid

                                    38.7k114797




                                    38.7k114797






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059796%2fif-a-a2-is-then-at-a-a%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        Npm cannot find a required file even through it is in the searched directory

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith