Any thoughts on this integral?












0












$begingroup$


$int cos^2(x)cdotsin^4(x)dx$



I tried the usual trigonometric identities but they don't seem helpful










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    As both exponents are even, you have to linearise. The simplest way uses the complex exponential.
    $endgroup$
    – Bernard
    Jan 23 at 11:01










  • $begingroup$
    You could try with $cos^2=1-sin^2$, then decompose $sin^4=sin^2cdotsin^2$, and similarly forma $sin^6$. Working this way you should lower the exponent by partial integration
    $endgroup$
    – Gabriele Cassese
    Jan 23 at 11:01










  • $begingroup$
    You can try t=sin^3(x)
    $endgroup$
    – Shaq
    Jan 23 at 11:02
















0












$begingroup$


$int cos^2(x)cdotsin^4(x)dx$



I tried the usual trigonometric identities but they don't seem helpful










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    As both exponents are even, you have to linearise. The simplest way uses the complex exponential.
    $endgroup$
    – Bernard
    Jan 23 at 11:01










  • $begingroup$
    You could try with $cos^2=1-sin^2$, then decompose $sin^4=sin^2cdotsin^2$, and similarly forma $sin^6$. Working this way you should lower the exponent by partial integration
    $endgroup$
    – Gabriele Cassese
    Jan 23 at 11:01










  • $begingroup$
    You can try t=sin^3(x)
    $endgroup$
    – Shaq
    Jan 23 at 11:02














0












0








0





$begingroup$


$int cos^2(x)cdotsin^4(x)dx$



I tried the usual trigonometric identities but they don't seem helpful










share|cite|improve this question











$endgroup$




$int cos^2(x)cdotsin^4(x)dx$



I tried the usual trigonometric identities but they don't seem helpful







integration indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 23 at 10:59









Gabriele Cassese

1,021314




1,021314










asked Jan 23 at 10:55









ChangaChanga

234




234








  • 1




    $begingroup$
    As both exponents are even, you have to linearise. The simplest way uses the complex exponential.
    $endgroup$
    – Bernard
    Jan 23 at 11:01










  • $begingroup$
    You could try with $cos^2=1-sin^2$, then decompose $sin^4=sin^2cdotsin^2$, and similarly forma $sin^6$. Working this way you should lower the exponent by partial integration
    $endgroup$
    – Gabriele Cassese
    Jan 23 at 11:01










  • $begingroup$
    You can try t=sin^3(x)
    $endgroup$
    – Shaq
    Jan 23 at 11:02














  • 1




    $begingroup$
    As both exponents are even, you have to linearise. The simplest way uses the complex exponential.
    $endgroup$
    – Bernard
    Jan 23 at 11:01










  • $begingroup$
    You could try with $cos^2=1-sin^2$, then decompose $sin^4=sin^2cdotsin^2$, and similarly forma $sin^6$. Working this way you should lower the exponent by partial integration
    $endgroup$
    – Gabriele Cassese
    Jan 23 at 11:01










  • $begingroup$
    You can try t=sin^3(x)
    $endgroup$
    – Shaq
    Jan 23 at 11:02








1




1




$begingroup$
As both exponents are even, you have to linearise. The simplest way uses the complex exponential.
$endgroup$
– Bernard
Jan 23 at 11:01




$begingroup$
As both exponents are even, you have to linearise. The simplest way uses the complex exponential.
$endgroup$
– Bernard
Jan 23 at 11:01












$begingroup$
You could try with $cos^2=1-sin^2$, then decompose $sin^4=sin^2cdotsin^2$, and similarly forma $sin^6$. Working this way you should lower the exponent by partial integration
$endgroup$
– Gabriele Cassese
Jan 23 at 11:01




$begingroup$
You could try with $cos^2=1-sin^2$, then decompose $sin^4=sin^2cdotsin^2$, and similarly forma $sin^6$. Working this way you should lower the exponent by partial integration
$endgroup$
– Gabriele Cassese
Jan 23 at 11:01












$begingroup$
You can try t=sin^3(x)
$endgroup$
– Shaq
Jan 23 at 11:02




$begingroup$
You can try t=sin^3(x)
$endgroup$
– Shaq
Jan 23 at 11:02










7 Answers
7






active

oldest

votes


















3












$begingroup$

$intcos^2(x)sin^4(x)~dx=frac14intsin^2(2x)sin^2(x)~dx\=frac18intsin^2(2x)[1-cos(2x)]~dx\=frac18left[intsin^2(2x)~dx-intsin^2(2x)cos(2x)~dxright]$



Solve the first integral by writing $sin^2(2x)=frac12[1-cos(4x)]$ and the second one by putting $sin(2x)=t$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you very much! it's clear now
    $endgroup$
    – Changa
    Jan 23 at 11:11










  • $begingroup$
    Glad to help :)
    $endgroup$
    – Shubham Johri
    Jan 23 at 11:11



















1












$begingroup$

Hint:



Use Intuition behind euler's formula



$$(2cos x)^2(2isin x)^4=left(e^{ix}+e^{-ix}right)^2left(e^{ix}-e^{-ix}right)^4$$



If $2cos(nx)=e^{inx}+e^{-inx}=u_n$



$$64cos^2xsin^4x=u_6+u_4(-4+2)+u_2(2+1-8+1+6)+u_0(-4)+12$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Use $cos(x)^2 = 1-sin(x)^2$. Then you have a $sin(x)^4$ and a $sin(x)^6$ to integrate. These can either be computed by partial integration or by using trigonometric identities for powers of $sin$.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Write $c$ for $cos x$ and $s$ for $sin x$. Then the integrand is
      begin{align}
      c^2 s^4
      &= c^2 s^2 (s^2) \
      &= frac{1}{4} (2cs)^2 (1 - c^2) \
      &= frac{1}{2} frac{1}{4} (2cs)^2 (2 - 2c^2) \
      &= frac{1}{2} left( frac{1}{4} (2cs)^2 (1 - 2c^2) right)
      + frac{1}{2} left( frac{1}{4} (2cs)^2 right) \
      end{align}

      Now $2cs = sin 2x$, and $1 - 2c^2 = -cos 2x$, so from here things should be relatively simple.






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        You can lower the degree by noting that
        $$
        cos^2x=frac{1+cos2x}{2},qquad sin^2x=frac{1-cos2x}{2}
        $$

        Thus you get
        $$
        frac{(1-cos^22x)(1-cos2x)}{4}=frac{1}{4}(1-cos^22x-cos2x+cos^32x)=
        frac{1}{4}left(1-frac{1+cos4x}{2}-cos2xsin^22xright)
        $$






        share|cite|improve this answer









        $endgroup$





















          0












          $begingroup$

          Here's a cool thing. It's called a reduction formula.



          Consider the integral
          $$I(n)=int cos(x)^{n}sin(x)^{2n}mathrm dx$$
          Then recall that $sin(x)^2=1-cos(x)^2$:
          $$I(n)=int cos(x)^nleft(1-cos(x)^2right)^nmathrm dx$$
          Then assuming that $n$ is a non-negative integer, we recall the binomial formula:
          $$(a-b)^n=sum_{k=0}^{n}(-1)^k{nchoose k}a^{n-k}b^k$$
          $$left(1-cos(x)^2right)^n=sum_{k=0}^{n}(-1)^k{nchoose k}cos(x)^{2k}$$
          So
          $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}intcos(x)^{2k+n}mathrm dx$$
          Then consider the integral
          $$C(m)=intcos(x)^mmathrm dx$$
          $$C(m)=intcos(x)^{m-1}cos(x)mathrm dx$$
          IBP:
          $$mathrm dv=cos(x)mathrm dxRightarrow v=sin(x)$$
          $$u=cos(x)^{m-1}Rightarrow mathrm du=-(m-1)cos(x)^{m-2}sin(x)mathrm dx$$
          So
          $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}sin(x)^2mathrm dx$$
          $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}mathrm dx-(m-1)intcos(x)^mmathrm dx$$
          $$C(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)-(m-1)C(m)$$
          $$mC(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)$$
          $$C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$$
          So
          $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}C(2k+n)$$
          I know this isn't a very efficient method for too large to count on one hand, but it is still an alternate method. Because your integral is $I(2)$, we have that
          $$I(2)=sum_{k=0}^{2}(-1)^k{2choose k}C(2k+2)$$
          $$I(2)=C(2)-2C(4)+C(6)$$
          And from $C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$ we see that
          $$I(2)=C(2)-2left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}C(4)$$
          $$I(2)=-frac12C(2)-frac{cos(x)^{3}sin(x)}{2}+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]$$
          $$I(2)=frac18C(2)-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
          And since $C(0)=intmathrm dx=x$,
          $$I(2)=frac18left[frac{cos(x)sin(x)}{2}+frac{x}{2}right]-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
          $$I(2)=frac{x}{16}+frac{cos(x)sin(x)}{16}-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
          And there you go.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            You could also use Euler’s Formula.



            $$ sin x = frac{e^{ix} - e^{-ix }}{2i} $$
            $$ cos x = frac{e^{ix} + e^{-ix}}{2} $$



            $$int {{(frac{e^{ix} - e^{-ix }}{2i})}^2} bullet {(frac{e^{ix} - e^{-ix }}{2i})}^4 dx $$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084326%2fany-thoughts-on-this-integral%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              7 Answers
              7






              active

              oldest

              votes








              7 Answers
              7






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              $intcos^2(x)sin^4(x)~dx=frac14intsin^2(2x)sin^2(x)~dx\=frac18intsin^2(2x)[1-cos(2x)]~dx\=frac18left[intsin^2(2x)~dx-intsin^2(2x)cos(2x)~dxright]$



              Solve the first integral by writing $sin^2(2x)=frac12[1-cos(4x)]$ and the second one by putting $sin(2x)=t$.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thank you very much! it's clear now
                $endgroup$
                – Changa
                Jan 23 at 11:11










              • $begingroup$
                Glad to help :)
                $endgroup$
                – Shubham Johri
                Jan 23 at 11:11
















              3












              $begingroup$

              $intcos^2(x)sin^4(x)~dx=frac14intsin^2(2x)sin^2(x)~dx\=frac18intsin^2(2x)[1-cos(2x)]~dx\=frac18left[intsin^2(2x)~dx-intsin^2(2x)cos(2x)~dxright]$



              Solve the first integral by writing $sin^2(2x)=frac12[1-cos(4x)]$ and the second one by putting $sin(2x)=t$.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thank you very much! it's clear now
                $endgroup$
                – Changa
                Jan 23 at 11:11










              • $begingroup$
                Glad to help :)
                $endgroup$
                – Shubham Johri
                Jan 23 at 11:11














              3












              3








              3





              $begingroup$

              $intcos^2(x)sin^4(x)~dx=frac14intsin^2(2x)sin^2(x)~dx\=frac18intsin^2(2x)[1-cos(2x)]~dx\=frac18left[intsin^2(2x)~dx-intsin^2(2x)cos(2x)~dxright]$



              Solve the first integral by writing $sin^2(2x)=frac12[1-cos(4x)]$ and the second one by putting $sin(2x)=t$.






              share|cite|improve this answer









              $endgroup$



              $intcos^2(x)sin^4(x)~dx=frac14intsin^2(2x)sin^2(x)~dx\=frac18intsin^2(2x)[1-cos(2x)]~dx\=frac18left[intsin^2(2x)~dx-intsin^2(2x)cos(2x)~dxright]$



              Solve the first integral by writing $sin^2(2x)=frac12[1-cos(4x)]$ and the second one by putting $sin(2x)=t$.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 23 at 11:09









              Shubham JohriShubham Johri

              5,204718




              5,204718












              • $begingroup$
                Thank you very much! it's clear now
                $endgroup$
                – Changa
                Jan 23 at 11:11










              • $begingroup$
                Glad to help :)
                $endgroup$
                – Shubham Johri
                Jan 23 at 11:11


















              • $begingroup$
                Thank you very much! it's clear now
                $endgroup$
                – Changa
                Jan 23 at 11:11










              • $begingroup$
                Glad to help :)
                $endgroup$
                – Shubham Johri
                Jan 23 at 11:11
















              $begingroup$
              Thank you very much! it's clear now
              $endgroup$
              – Changa
              Jan 23 at 11:11




              $begingroup$
              Thank you very much! it's clear now
              $endgroup$
              – Changa
              Jan 23 at 11:11












              $begingroup$
              Glad to help :)
              $endgroup$
              – Shubham Johri
              Jan 23 at 11:11




              $begingroup$
              Glad to help :)
              $endgroup$
              – Shubham Johri
              Jan 23 at 11:11











              1












              $begingroup$

              Hint:



              Use Intuition behind euler's formula



              $$(2cos x)^2(2isin x)^4=left(e^{ix}+e^{-ix}right)^2left(e^{ix}-e^{-ix}right)^4$$



              If $2cos(nx)=e^{inx}+e^{-inx}=u_n$



              $$64cos^2xsin^4x=u_6+u_4(-4+2)+u_2(2+1-8+1+6)+u_0(-4)+12$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Hint:



                Use Intuition behind euler's formula



                $$(2cos x)^2(2isin x)^4=left(e^{ix}+e^{-ix}right)^2left(e^{ix}-e^{-ix}right)^4$$



                If $2cos(nx)=e^{inx}+e^{-inx}=u_n$



                $$64cos^2xsin^4x=u_6+u_4(-4+2)+u_2(2+1-8+1+6)+u_0(-4)+12$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Hint:



                  Use Intuition behind euler's formula



                  $$(2cos x)^2(2isin x)^4=left(e^{ix}+e^{-ix}right)^2left(e^{ix}-e^{-ix}right)^4$$



                  If $2cos(nx)=e^{inx}+e^{-inx}=u_n$



                  $$64cos^2xsin^4x=u_6+u_4(-4+2)+u_2(2+1-8+1+6)+u_0(-4)+12$$






                  share|cite|improve this answer









                  $endgroup$



                  Hint:



                  Use Intuition behind euler's formula



                  $$(2cos x)^2(2isin x)^4=left(e^{ix}+e^{-ix}right)^2left(e^{ix}-e^{-ix}right)^4$$



                  If $2cos(nx)=e^{inx}+e^{-inx}=u_n$



                  $$64cos^2xsin^4x=u_6+u_4(-4+2)+u_2(2+1-8+1+6)+u_0(-4)+12$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 23 at 11:46









                  lab bhattacharjeelab bhattacharjee

                  226k15158275




                  226k15158275























                      0












                      $begingroup$

                      Use $cos(x)^2 = 1-sin(x)^2$. Then you have a $sin(x)^4$ and a $sin(x)^6$ to integrate. These can either be computed by partial integration or by using trigonometric identities for powers of $sin$.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Use $cos(x)^2 = 1-sin(x)^2$. Then you have a $sin(x)^4$ and a $sin(x)^6$ to integrate. These can either be computed by partial integration or by using trigonometric identities for powers of $sin$.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Use $cos(x)^2 = 1-sin(x)^2$. Then you have a $sin(x)^4$ and a $sin(x)^6$ to integrate. These can either be computed by partial integration or by using trigonometric identities for powers of $sin$.






                          share|cite|improve this answer









                          $endgroup$



                          Use $cos(x)^2 = 1-sin(x)^2$. Then you have a $sin(x)^4$ and a $sin(x)^6$ to integrate. These can either be computed by partial integration or by using trigonometric identities for powers of $sin$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 23 at 11:01









                          KlausKlaus

                          2,30712




                          2,30712























                              0












                              $begingroup$

                              Write $c$ for $cos x$ and $s$ for $sin x$. Then the integrand is
                              begin{align}
                              c^2 s^4
                              &= c^2 s^2 (s^2) \
                              &= frac{1}{4} (2cs)^2 (1 - c^2) \
                              &= frac{1}{2} frac{1}{4} (2cs)^2 (2 - 2c^2) \
                              &= frac{1}{2} left( frac{1}{4} (2cs)^2 (1 - 2c^2) right)
                              + frac{1}{2} left( frac{1}{4} (2cs)^2 right) \
                              end{align}

                              Now $2cs = sin 2x$, and $1 - 2c^2 = -cos 2x$, so from here things should be relatively simple.






                              share|cite|improve this answer









                              $endgroup$


















                                0












                                $begingroup$

                                Write $c$ for $cos x$ and $s$ for $sin x$. Then the integrand is
                                begin{align}
                                c^2 s^4
                                &= c^2 s^2 (s^2) \
                                &= frac{1}{4} (2cs)^2 (1 - c^2) \
                                &= frac{1}{2} frac{1}{4} (2cs)^2 (2 - 2c^2) \
                                &= frac{1}{2} left( frac{1}{4} (2cs)^2 (1 - 2c^2) right)
                                + frac{1}{2} left( frac{1}{4} (2cs)^2 right) \
                                end{align}

                                Now $2cs = sin 2x$, and $1 - 2c^2 = -cos 2x$, so from here things should be relatively simple.






                                share|cite|improve this answer









                                $endgroup$
















                                  0












                                  0








                                  0





                                  $begingroup$

                                  Write $c$ for $cos x$ and $s$ for $sin x$. Then the integrand is
                                  begin{align}
                                  c^2 s^4
                                  &= c^2 s^2 (s^2) \
                                  &= frac{1}{4} (2cs)^2 (1 - c^2) \
                                  &= frac{1}{2} frac{1}{4} (2cs)^2 (2 - 2c^2) \
                                  &= frac{1}{2} left( frac{1}{4} (2cs)^2 (1 - 2c^2) right)
                                  + frac{1}{2} left( frac{1}{4} (2cs)^2 right) \
                                  end{align}

                                  Now $2cs = sin 2x$, and $1 - 2c^2 = -cos 2x$, so from here things should be relatively simple.






                                  share|cite|improve this answer









                                  $endgroup$



                                  Write $c$ for $cos x$ and $s$ for $sin x$. Then the integrand is
                                  begin{align}
                                  c^2 s^4
                                  &= c^2 s^2 (s^2) \
                                  &= frac{1}{4} (2cs)^2 (1 - c^2) \
                                  &= frac{1}{2} frac{1}{4} (2cs)^2 (2 - 2c^2) \
                                  &= frac{1}{2} left( frac{1}{4} (2cs)^2 (1 - 2c^2) right)
                                  + frac{1}{2} left( frac{1}{4} (2cs)^2 right) \
                                  end{align}

                                  Now $2cs = sin 2x$, and $1 - 2c^2 = -cos 2x$, so from here things should be relatively simple.







                                  share|cite|improve this answer












                                  share|cite|improve this answer



                                  share|cite|improve this answer










                                  answered Jan 23 at 11:06









                                  John HughesJohn Hughes

                                  64.5k24191




                                  64.5k24191























                                      0












                                      $begingroup$

                                      You can lower the degree by noting that
                                      $$
                                      cos^2x=frac{1+cos2x}{2},qquad sin^2x=frac{1-cos2x}{2}
                                      $$

                                      Thus you get
                                      $$
                                      frac{(1-cos^22x)(1-cos2x)}{4}=frac{1}{4}(1-cos^22x-cos2x+cos^32x)=
                                      frac{1}{4}left(1-frac{1+cos4x}{2}-cos2xsin^22xright)
                                      $$






                                      share|cite|improve this answer









                                      $endgroup$


















                                        0












                                        $begingroup$

                                        You can lower the degree by noting that
                                        $$
                                        cos^2x=frac{1+cos2x}{2},qquad sin^2x=frac{1-cos2x}{2}
                                        $$

                                        Thus you get
                                        $$
                                        frac{(1-cos^22x)(1-cos2x)}{4}=frac{1}{4}(1-cos^22x-cos2x+cos^32x)=
                                        frac{1}{4}left(1-frac{1+cos4x}{2}-cos2xsin^22xright)
                                        $$






                                        share|cite|improve this answer









                                        $endgroup$
















                                          0












                                          0








                                          0





                                          $begingroup$

                                          You can lower the degree by noting that
                                          $$
                                          cos^2x=frac{1+cos2x}{2},qquad sin^2x=frac{1-cos2x}{2}
                                          $$

                                          Thus you get
                                          $$
                                          frac{(1-cos^22x)(1-cos2x)}{4}=frac{1}{4}(1-cos^22x-cos2x+cos^32x)=
                                          frac{1}{4}left(1-frac{1+cos4x}{2}-cos2xsin^22xright)
                                          $$






                                          share|cite|improve this answer









                                          $endgroup$



                                          You can lower the degree by noting that
                                          $$
                                          cos^2x=frac{1+cos2x}{2},qquad sin^2x=frac{1-cos2x}{2}
                                          $$

                                          Thus you get
                                          $$
                                          frac{(1-cos^22x)(1-cos2x)}{4}=frac{1}{4}(1-cos^22x-cos2x+cos^32x)=
                                          frac{1}{4}left(1-frac{1+cos4x}{2}-cos2xsin^22xright)
                                          $$







                                          share|cite|improve this answer












                                          share|cite|improve this answer



                                          share|cite|improve this answer










                                          answered Jan 23 at 11:12









                                          egregegreg

                                          184k1486205




                                          184k1486205























                                              0












                                              $begingroup$

                                              Here's a cool thing. It's called a reduction formula.



                                              Consider the integral
                                              $$I(n)=int cos(x)^{n}sin(x)^{2n}mathrm dx$$
                                              Then recall that $sin(x)^2=1-cos(x)^2$:
                                              $$I(n)=int cos(x)^nleft(1-cos(x)^2right)^nmathrm dx$$
                                              Then assuming that $n$ is a non-negative integer, we recall the binomial formula:
                                              $$(a-b)^n=sum_{k=0}^{n}(-1)^k{nchoose k}a^{n-k}b^k$$
                                              $$left(1-cos(x)^2right)^n=sum_{k=0}^{n}(-1)^k{nchoose k}cos(x)^{2k}$$
                                              So
                                              $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}intcos(x)^{2k+n}mathrm dx$$
                                              Then consider the integral
                                              $$C(m)=intcos(x)^mmathrm dx$$
                                              $$C(m)=intcos(x)^{m-1}cos(x)mathrm dx$$
                                              IBP:
                                              $$mathrm dv=cos(x)mathrm dxRightarrow v=sin(x)$$
                                              $$u=cos(x)^{m-1}Rightarrow mathrm du=-(m-1)cos(x)^{m-2}sin(x)mathrm dx$$
                                              So
                                              $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}sin(x)^2mathrm dx$$
                                              $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}mathrm dx-(m-1)intcos(x)^mmathrm dx$$
                                              $$C(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)-(m-1)C(m)$$
                                              $$mC(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)$$
                                              $$C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$$
                                              So
                                              $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}C(2k+n)$$
                                              I know this isn't a very efficient method for too large to count on one hand, but it is still an alternate method. Because your integral is $I(2)$, we have that
                                              $$I(2)=sum_{k=0}^{2}(-1)^k{2choose k}C(2k+2)$$
                                              $$I(2)=C(2)-2C(4)+C(6)$$
                                              And from $C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$ we see that
                                              $$I(2)=C(2)-2left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}C(4)$$
                                              $$I(2)=-frac12C(2)-frac{cos(x)^{3}sin(x)}{2}+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]$$
                                              $$I(2)=frac18C(2)-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                              And since $C(0)=intmathrm dx=x$,
                                              $$I(2)=frac18left[frac{cos(x)sin(x)}{2}+frac{x}{2}right]-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                              $$I(2)=frac{x}{16}+frac{cos(x)sin(x)}{16}-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                              And there you go.






                                              share|cite|improve this answer









                                              $endgroup$


















                                                0












                                                $begingroup$

                                                Here's a cool thing. It's called a reduction formula.



                                                Consider the integral
                                                $$I(n)=int cos(x)^{n}sin(x)^{2n}mathrm dx$$
                                                Then recall that $sin(x)^2=1-cos(x)^2$:
                                                $$I(n)=int cos(x)^nleft(1-cos(x)^2right)^nmathrm dx$$
                                                Then assuming that $n$ is a non-negative integer, we recall the binomial formula:
                                                $$(a-b)^n=sum_{k=0}^{n}(-1)^k{nchoose k}a^{n-k}b^k$$
                                                $$left(1-cos(x)^2right)^n=sum_{k=0}^{n}(-1)^k{nchoose k}cos(x)^{2k}$$
                                                So
                                                $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}intcos(x)^{2k+n}mathrm dx$$
                                                Then consider the integral
                                                $$C(m)=intcos(x)^mmathrm dx$$
                                                $$C(m)=intcos(x)^{m-1}cos(x)mathrm dx$$
                                                IBP:
                                                $$mathrm dv=cos(x)mathrm dxRightarrow v=sin(x)$$
                                                $$u=cos(x)^{m-1}Rightarrow mathrm du=-(m-1)cos(x)^{m-2}sin(x)mathrm dx$$
                                                So
                                                $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}sin(x)^2mathrm dx$$
                                                $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}mathrm dx-(m-1)intcos(x)^mmathrm dx$$
                                                $$C(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)-(m-1)C(m)$$
                                                $$mC(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)$$
                                                $$C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$$
                                                So
                                                $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}C(2k+n)$$
                                                I know this isn't a very efficient method for too large to count on one hand, but it is still an alternate method. Because your integral is $I(2)$, we have that
                                                $$I(2)=sum_{k=0}^{2}(-1)^k{2choose k}C(2k+2)$$
                                                $$I(2)=C(2)-2C(4)+C(6)$$
                                                And from $C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$ we see that
                                                $$I(2)=C(2)-2left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}C(4)$$
                                                $$I(2)=-frac12C(2)-frac{cos(x)^{3}sin(x)}{2}+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]$$
                                                $$I(2)=frac18C(2)-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                                And since $C(0)=intmathrm dx=x$,
                                                $$I(2)=frac18left[frac{cos(x)sin(x)}{2}+frac{x}{2}right]-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                                $$I(2)=frac{x}{16}+frac{cos(x)sin(x)}{16}-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                                And there you go.






                                                share|cite|improve this answer









                                                $endgroup$
















                                                  0












                                                  0








                                                  0





                                                  $begingroup$

                                                  Here's a cool thing. It's called a reduction formula.



                                                  Consider the integral
                                                  $$I(n)=int cos(x)^{n}sin(x)^{2n}mathrm dx$$
                                                  Then recall that $sin(x)^2=1-cos(x)^2$:
                                                  $$I(n)=int cos(x)^nleft(1-cos(x)^2right)^nmathrm dx$$
                                                  Then assuming that $n$ is a non-negative integer, we recall the binomial formula:
                                                  $$(a-b)^n=sum_{k=0}^{n}(-1)^k{nchoose k}a^{n-k}b^k$$
                                                  $$left(1-cos(x)^2right)^n=sum_{k=0}^{n}(-1)^k{nchoose k}cos(x)^{2k}$$
                                                  So
                                                  $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}intcos(x)^{2k+n}mathrm dx$$
                                                  Then consider the integral
                                                  $$C(m)=intcos(x)^mmathrm dx$$
                                                  $$C(m)=intcos(x)^{m-1}cos(x)mathrm dx$$
                                                  IBP:
                                                  $$mathrm dv=cos(x)mathrm dxRightarrow v=sin(x)$$
                                                  $$u=cos(x)^{m-1}Rightarrow mathrm du=-(m-1)cos(x)^{m-2}sin(x)mathrm dx$$
                                                  So
                                                  $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}sin(x)^2mathrm dx$$
                                                  $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}mathrm dx-(m-1)intcos(x)^mmathrm dx$$
                                                  $$C(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)-(m-1)C(m)$$
                                                  $$mC(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)$$
                                                  $$C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$$
                                                  So
                                                  $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}C(2k+n)$$
                                                  I know this isn't a very efficient method for too large to count on one hand, but it is still an alternate method. Because your integral is $I(2)$, we have that
                                                  $$I(2)=sum_{k=0}^{2}(-1)^k{2choose k}C(2k+2)$$
                                                  $$I(2)=C(2)-2C(4)+C(6)$$
                                                  And from $C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$ we see that
                                                  $$I(2)=C(2)-2left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}C(4)$$
                                                  $$I(2)=-frac12C(2)-frac{cos(x)^{3}sin(x)}{2}+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]$$
                                                  $$I(2)=frac18C(2)-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                                  And since $C(0)=intmathrm dx=x$,
                                                  $$I(2)=frac18left[frac{cos(x)sin(x)}{2}+frac{x}{2}right]-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                                  $$I(2)=frac{x}{16}+frac{cos(x)sin(x)}{16}-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                                  And there you go.






                                                  share|cite|improve this answer









                                                  $endgroup$



                                                  Here's a cool thing. It's called a reduction formula.



                                                  Consider the integral
                                                  $$I(n)=int cos(x)^{n}sin(x)^{2n}mathrm dx$$
                                                  Then recall that $sin(x)^2=1-cos(x)^2$:
                                                  $$I(n)=int cos(x)^nleft(1-cos(x)^2right)^nmathrm dx$$
                                                  Then assuming that $n$ is a non-negative integer, we recall the binomial formula:
                                                  $$(a-b)^n=sum_{k=0}^{n}(-1)^k{nchoose k}a^{n-k}b^k$$
                                                  $$left(1-cos(x)^2right)^n=sum_{k=0}^{n}(-1)^k{nchoose k}cos(x)^{2k}$$
                                                  So
                                                  $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}intcos(x)^{2k+n}mathrm dx$$
                                                  Then consider the integral
                                                  $$C(m)=intcos(x)^mmathrm dx$$
                                                  $$C(m)=intcos(x)^{m-1}cos(x)mathrm dx$$
                                                  IBP:
                                                  $$mathrm dv=cos(x)mathrm dxRightarrow v=sin(x)$$
                                                  $$u=cos(x)^{m-1}Rightarrow mathrm du=-(m-1)cos(x)^{m-2}sin(x)mathrm dx$$
                                                  So
                                                  $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}sin(x)^2mathrm dx$$
                                                  $$C(m)=cos(x)^{m-1}sin(x)+(m-1)intcos(x)^{m-2}mathrm dx-(m-1)intcos(x)^mmathrm dx$$
                                                  $$C(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)-(m-1)C(m)$$
                                                  $$mC(m)=cos(x)^{m-1}sin(x)+(m-1)C(m-2)$$
                                                  $$C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$$
                                                  So
                                                  $$I(n)=sum_{k=0}^{n}(-1)^k{nchoose k}C(2k+n)$$
                                                  I know this isn't a very efficient method for too large to count on one hand, but it is still an alternate method. Because your integral is $I(2)$, we have that
                                                  $$I(2)=sum_{k=0}^{2}(-1)^k{2choose k}C(2k+2)$$
                                                  $$I(2)=C(2)-2C(4)+C(6)$$
                                                  And from $C(m)=frac{cos(x)^{m-1}sin(x)}{m}+frac{m-1}{m}C(m-2)$ we see that
                                                  $$I(2)=C(2)-2left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}C(4)$$
                                                  $$I(2)=-frac12C(2)-frac{cos(x)^{3}sin(x)}{2}+frac{cos(x)^{5}sin(x)}{6}+frac{5}{6}left[frac{cos(x)^{3}sin(x)}{4}+frac{3}{4}C(2)right]$$
                                                  $$I(2)=frac18C(2)-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                                  And since $C(0)=intmathrm dx=x$,
                                                  $$I(2)=frac18left[frac{cos(x)sin(x)}{2}+frac{x}{2}right]-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                                  $$I(2)=frac{x}{16}+frac{cos(x)sin(x)}{16}-frac{7cos(x)^{3}sin(x)}{24}+frac{cos(x)^{5}sin(x)}{6}$$
                                                  And there you go.







                                                  share|cite|improve this answer












                                                  share|cite|improve this answer



                                                  share|cite|improve this answer










                                                  answered Jan 24 at 16:59









                                                  clathratusclathratus

                                                  4,9301338




                                                  4,9301338























                                                      0












                                                      $begingroup$

                                                      You could also use Euler’s Formula.



                                                      $$ sin x = frac{e^{ix} - e^{-ix }}{2i} $$
                                                      $$ cos x = frac{e^{ix} + e^{-ix}}{2} $$



                                                      $$int {{(frac{e^{ix} - e^{-ix }}{2i})}^2} bullet {(frac{e^{ix} - e^{-ix }}{2i})}^4 dx $$






                                                      share|cite|improve this answer









                                                      $endgroup$


















                                                        0












                                                        $begingroup$

                                                        You could also use Euler’s Formula.



                                                        $$ sin x = frac{e^{ix} - e^{-ix }}{2i} $$
                                                        $$ cos x = frac{e^{ix} + e^{-ix}}{2} $$



                                                        $$int {{(frac{e^{ix} - e^{-ix }}{2i})}^2} bullet {(frac{e^{ix} - e^{-ix }}{2i})}^4 dx $$






                                                        share|cite|improve this answer









                                                        $endgroup$
















                                                          0












                                                          0








                                                          0





                                                          $begingroup$

                                                          You could also use Euler’s Formula.



                                                          $$ sin x = frac{e^{ix} - e^{-ix }}{2i} $$
                                                          $$ cos x = frac{e^{ix} + e^{-ix}}{2} $$



                                                          $$int {{(frac{e^{ix} - e^{-ix }}{2i})}^2} bullet {(frac{e^{ix} - e^{-ix }}{2i})}^4 dx $$






                                                          share|cite|improve this answer









                                                          $endgroup$



                                                          You could also use Euler’s Formula.



                                                          $$ sin x = frac{e^{ix} - e^{-ix }}{2i} $$
                                                          $$ cos x = frac{e^{ix} + e^{-ix}}{2} $$



                                                          $$int {{(frac{e^{ix} - e^{-ix }}{2i})}^2} bullet {(frac{e^{ix} - e^{-ix }}{2i})}^4 dx $$







                                                          share|cite|improve this answer












                                                          share|cite|improve this answer



                                                          share|cite|improve this answer










                                                          answered Feb 9 at 18:09









                                                          Michael LeeMichael Lee

                                                          6018




                                                          6018






























                                                              draft saved

                                                              draft discarded




















































                                                              Thanks for contributing an answer to Mathematics Stack Exchange!


                                                              • Please be sure to answer the question. Provide details and share your research!

                                                              But avoid



                                                              • Asking for help, clarification, or responding to other answers.

                                                              • Making statements based on opinion; back them up with references or personal experience.


                                                              Use MathJax to format equations. MathJax reference.


                                                              To learn more, see our tips on writing great answers.




                                                              draft saved


                                                              draft discarded














                                                              StackExchange.ready(
                                                              function () {
                                                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084326%2fany-thoughts-on-this-integral%23new-answer', 'question_page');
                                                              }
                                                              );

                                                              Post as a guest















                                                              Required, but never shown





















































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown

































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown







                                                              Popular posts from this blog

                                                              MongoDB - Not Authorized To Execute Command

                                                              How to fix TextFormField cause rebuild widget in Flutter

                                                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith