Find range of $x$ if $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$












2












$begingroup$



If $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$, then $x$ lies in _______




My Attempt



$$
log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)=log_5bigg(6+dfrac{2}{x}bigg)-log_{5}bigg(1+dfrac{x}{10}bigg)leq1\
log_5frac{(6x+2)10}{x(10+x)}leq1impliesfrac{(6x+2)10}{x(10+x)}leq5\
frac{4(3x+1)}{x^2+10x}leq1\
implies 12x+4leq x^2+10xquadtext{or}quad12x+4>x^2+10x\
x^2-2x-4geq0quadtext{or}quad x^2-2x-4<0implies xinmathcal{R}
$$



My reference gives the solution $(-infty,1-sqrt{5})cup(1+sqrt{5},infty)$, what is going wrong here ?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$



    If $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$, then $x$ lies in _______




    My Attempt



    $$
    log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)=log_5bigg(6+dfrac{2}{x}bigg)-log_{5}bigg(1+dfrac{x}{10}bigg)leq1\
    log_5frac{(6x+2)10}{x(10+x)}leq1impliesfrac{(6x+2)10}{x(10+x)}leq5\
    frac{4(3x+1)}{x^2+10x}leq1\
    implies 12x+4leq x^2+10xquadtext{or}quad12x+4>x^2+10x\
    x^2-2x-4geq0quadtext{or}quad x^2-2x-4<0implies xinmathcal{R}
    $$



    My reference gives the solution $(-infty,1-sqrt{5})cup(1+sqrt{5},infty)$, what is going wrong here ?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$



      If $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$, then $x$ lies in _______




      My Attempt



      $$
      log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)=log_5bigg(6+dfrac{2}{x}bigg)-log_{5}bigg(1+dfrac{x}{10}bigg)leq1\
      log_5frac{(6x+2)10}{x(10+x)}leq1impliesfrac{(6x+2)10}{x(10+x)}leq5\
      frac{4(3x+1)}{x^2+10x}leq1\
      implies 12x+4leq x^2+10xquadtext{or}quad12x+4>x^2+10x\
      x^2-2x-4geq0quadtext{or}quad x^2-2x-4<0implies xinmathcal{R}
      $$



      My reference gives the solution $(-infty,1-sqrt{5})cup(1+sqrt{5},infty)$, what is going wrong here ?










      share|cite|improve this question











      $endgroup$





      If $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$, then $x$ lies in _______




      My Attempt



      $$
      log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)=log_5bigg(6+dfrac{2}{x}bigg)-log_{5}bigg(1+dfrac{x}{10}bigg)leq1\
      log_5frac{(6x+2)10}{x(10+x)}leq1impliesfrac{(6x+2)10}{x(10+x)}leq5\
      frac{4(3x+1)}{x^2+10x}leq1\
      implies 12x+4leq x^2+10xquadtext{or}quad12x+4>x^2+10x\
      x^2-2x-4geq0quadtext{or}quad x^2-2x-4<0implies xinmathcal{R}
      $$



      My reference gives the solution $(-infty,1-sqrt{5})cup(1+sqrt{5},infty)$, what is going wrong here ?







      inequality logarithms






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 19:14







      ss1729

















      asked Jan 23 at 14:21









      ss1729ss1729

      2,00311024




      2,00311024






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$



          is true!






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            ohh i can't believe i did not see the domain of log got to be greater than zero.
            $endgroup$
            – ss1729
            Jan 23 at 19:18



















          1












          $begingroup$

          By your work we need to solve
          $$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$



          The first by the interval's method gives
          $$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
          $$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
            $$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
            $$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
            $$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084524%2ffind-range-of-x-if-log-5-bigg6-dfrac2x-bigg-log-1-5-bigg1-dfrac%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$



              is true!






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                ohh i can't believe i did not see the domain of log got to be greater than zero.
                $endgroup$
                – ss1729
                Jan 23 at 19:18
















              2












              $begingroup$

              You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$



              is true!






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                ohh i can't believe i did not see the domain of log got to be greater than zero.
                $endgroup$
                – ss1729
                Jan 23 at 19:18














              2












              2








              2





              $begingroup$

              You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$



              is true!






              share|cite|improve this answer









              $endgroup$



              You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$



              is true!







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 23 at 14:27









              Maria MazurMaria Mazur

              46.7k1260120




              46.7k1260120












              • $begingroup$
                ohh i can't believe i did not see the domain of log got to be greater than zero.
                $endgroup$
                – ss1729
                Jan 23 at 19:18


















              • $begingroup$
                ohh i can't believe i did not see the domain of log got to be greater than zero.
                $endgroup$
                – ss1729
                Jan 23 at 19:18
















              $begingroup$
              ohh i can't believe i did not see the domain of log got to be greater than zero.
              $endgroup$
              – ss1729
              Jan 23 at 19:18




              $begingroup$
              ohh i can't believe i did not see the domain of log got to be greater than zero.
              $endgroup$
              – ss1729
              Jan 23 at 19:18











              1












              $begingroup$

              By your work we need to solve
              $$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$



              The first by the interval's method gives
              $$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
              $$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                By your work we need to solve
                $$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$



                The first by the interval's method gives
                $$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
                $$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  By your work we need to solve
                  $$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$



                  The first by the interval's method gives
                  $$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
                  $$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$






                  share|cite|improve this answer











                  $endgroup$



                  By your work we need to solve
                  $$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$



                  The first by the interval's method gives
                  $$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
                  $$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 23 at 14:36

























                  answered Jan 23 at 14:27









                  Michael RozenbergMichael Rozenberg

                  108k1895200




                  108k1895200























                      0












                      $begingroup$

                      Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
                      $$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
                      $$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
                      $$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$






                      share|cite|improve this answer











                      $endgroup$


















                        0












                        $begingroup$

                        Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
                        $$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
                        $$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
                        $$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$






                        share|cite|improve this answer











                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
                          $$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
                          $$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
                          $$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$






                          share|cite|improve this answer











                          $endgroup$



                          Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
                          $$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
                          $$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
                          $$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jan 23 at 14:51









                          Bernard

                          122k741116




                          122k741116










                          answered Jan 23 at 14:41









                          Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                          77.7k42866




                          77.7k42866






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084524%2ffind-range-of-x-if-log-5-bigg6-dfrac2x-bigg-log-1-5-bigg1-dfrac%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              'app-layout' is not a known element: how to share Component with different Modules

                              android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                              WPF add header to Image with URL pettitions [duplicate]