Find range of $x$ if $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$
$begingroup$
If $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$, then $x$ lies in _______
My Attempt
$$
log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)=log_5bigg(6+dfrac{2}{x}bigg)-log_{5}bigg(1+dfrac{x}{10}bigg)leq1\
log_5frac{(6x+2)10}{x(10+x)}leq1impliesfrac{(6x+2)10}{x(10+x)}leq5\
frac{4(3x+1)}{x^2+10x}leq1\
implies 12x+4leq x^2+10xquadtext{or}quad12x+4>x^2+10x\
x^2-2x-4geq0quadtext{or}quad x^2-2x-4<0implies xinmathcal{R}
$$
My reference gives the solution $(-infty,1-sqrt{5})cup(1+sqrt{5},infty)$, what is going wrong here ?
inequality logarithms
$endgroup$
add a comment |
$begingroup$
If $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$, then $x$ lies in _______
My Attempt
$$
log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)=log_5bigg(6+dfrac{2}{x}bigg)-log_{5}bigg(1+dfrac{x}{10}bigg)leq1\
log_5frac{(6x+2)10}{x(10+x)}leq1impliesfrac{(6x+2)10}{x(10+x)}leq5\
frac{4(3x+1)}{x^2+10x}leq1\
implies 12x+4leq x^2+10xquadtext{or}quad12x+4>x^2+10x\
x^2-2x-4geq0quadtext{or}quad x^2-2x-4<0implies xinmathcal{R}
$$
My reference gives the solution $(-infty,1-sqrt{5})cup(1+sqrt{5},infty)$, what is going wrong here ?
inequality logarithms
$endgroup$
add a comment |
$begingroup$
If $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$, then $x$ lies in _______
My Attempt
$$
log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)=log_5bigg(6+dfrac{2}{x}bigg)-log_{5}bigg(1+dfrac{x}{10}bigg)leq1\
log_5frac{(6x+2)10}{x(10+x)}leq1impliesfrac{(6x+2)10}{x(10+x)}leq5\
frac{4(3x+1)}{x^2+10x}leq1\
implies 12x+4leq x^2+10xquadtext{or}quad12x+4>x^2+10x\
x^2-2x-4geq0quadtext{or}quad x^2-2x-4<0implies xinmathcal{R}
$$
My reference gives the solution $(-infty,1-sqrt{5})cup(1+sqrt{5},infty)$, what is going wrong here ?
inequality logarithms
$endgroup$
If $log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)leq1$, then $x$ lies in _______
My Attempt
$$
log_5bigg(6+dfrac{2}{x}bigg)+log_{1/5}bigg(1+dfrac{x}{10}bigg)=log_5bigg(6+dfrac{2}{x}bigg)-log_{5}bigg(1+dfrac{x}{10}bigg)leq1\
log_5frac{(6x+2)10}{x(10+x)}leq1impliesfrac{(6x+2)10}{x(10+x)}leq5\
frac{4(3x+1)}{x^2+10x}leq1\
implies 12x+4leq x^2+10xquadtext{or}quad12x+4>x^2+10x\
x^2-2x-4geq0quadtext{or}quad x^2-2x-4<0implies xinmathcal{R}
$$
My reference gives the solution $(-infty,1-sqrt{5})cup(1+sqrt{5},infty)$, what is going wrong here ?
inequality logarithms
inequality logarithms
edited Jan 23 at 19:14
ss1729
asked Jan 23 at 14:21
ss1729ss1729
2,00311024
2,00311024
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$
is true!
$endgroup$
$begingroup$
ohh i can't believe i did not see the domain of log got to be greater than zero.
$endgroup$
– ss1729
Jan 23 at 19:18
add a comment |
$begingroup$
By your work we need to solve
$$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$
The first by the interval's method gives
$$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
$$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$
$endgroup$
add a comment |
$begingroup$
Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
$$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
$$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
$$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084524%2ffind-range-of-x-if-log-5-bigg6-dfrac2x-bigg-log-1-5-bigg1-dfrac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$
is true!
$endgroup$
$begingroup$
ohh i can't believe i did not see the domain of log got to be greater than zero.
$endgroup$
– ss1729
Jan 23 at 19:18
add a comment |
$begingroup$
You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$
is true!
$endgroup$
$begingroup$
ohh i can't believe i did not see the domain of log got to be greater than zero.
$endgroup$
– ss1729
Jan 23 at 19:18
add a comment |
$begingroup$
You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$
is true!
$endgroup$
You forgot to check when $$6+dfrac{2}{x}>0$$ and $$1+dfrac{x}{10}>0$$
is true!
answered Jan 23 at 14:27
Maria MazurMaria Mazur
46.7k1260120
46.7k1260120
$begingroup$
ohh i can't believe i did not see the domain of log got to be greater than zero.
$endgroup$
– ss1729
Jan 23 at 19:18
add a comment |
$begingroup$
ohh i can't believe i did not see the domain of log got to be greater than zero.
$endgroup$
– ss1729
Jan 23 at 19:18
$begingroup$
ohh i can't believe i did not see the domain of log got to be greater than zero.
$endgroup$
– ss1729
Jan 23 at 19:18
$begingroup$
ohh i can't believe i did not see the domain of log got to be greater than zero.
$endgroup$
– ss1729
Jan 23 at 19:18
add a comment |
$begingroup$
By your work we need to solve
$$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$
The first by the interval's method gives
$$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
$$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$
$endgroup$
add a comment |
$begingroup$
By your work we need to solve
$$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$
The first by the interval's method gives
$$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
$$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$
$endgroup$
add a comment |
$begingroup$
By your work we need to solve
$$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$
The first by the interval's method gives
$$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
$$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$
$endgroup$
By your work we need to solve
$$frac{x^2-2x-4}{x(x+10)}geq0$$ and the domain gives $x>0$ or $-10<x<-frac{1}{3}.$
The first by the interval's method gives
$$1-sqrt5leq x<0$$ or $$xgeq1+sqrt5$$ or $$x<-10,$$ which with our domain gives the answer:
$$left[1-sqrt5,-frac{1}{3}right)cup[1+sqrt5,+infty).$$
edited Jan 23 at 14:36
answered Jan 23 at 14:27
Michael RozenbergMichael Rozenberg
108k1895200
108k1895200
add a comment |
add a comment |
$begingroup$
Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
$$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
$$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
$$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$
$endgroup$
add a comment |
$begingroup$
Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
$$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
$$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
$$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$
$endgroup$
add a comment |
$begingroup$
Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
$$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
$$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
$$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$
$endgroup$
Writing your inequality in the form $$frac{lnleft(6+frac{2}{x}right)}{ln(5)}+frac{lnleft(1+frac{x}{10}right)}{-ln(5)}le 1$$ we get the inequalities
$$6+frac{2}{x}>0$$ and $$1+frac{x}{10}>0$$ and
$$frac{6+frac{2}{x}}{1+frac{x}{10}}le 5$$ we get
$$1-sqrt{5}le x<-frac{1}{3}$$ or $$xgeq 1+sqrt{5}$$
edited Jan 23 at 14:51
Bernard
122k741116
122k741116
answered Jan 23 at 14:41
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
77.7k42866
77.7k42866
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084524%2ffind-range-of-x-if-log-5-bigg6-dfrac2x-bigg-log-1-5-bigg1-dfrac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown