Finding the density function given the conditional.
$begingroup$
I have the following conditional density function:
$f_{Y vert X = x}(y) sim Normal(0,frac{1}{x})$
I also know that $ X sim Gamma(frac{3}{2}, frac{1}{2})$.
I want to find the density of just $f_Y$.
My problem is that I do not know the joint density of X and Y, so I do not know formulas to solve this. Any hints?
probability
$endgroup$
add a comment |
$begingroup$
I have the following conditional density function:
$f_{Y vert X = x}(y) sim Normal(0,frac{1}{x})$
I also know that $ X sim Gamma(frac{3}{2}, frac{1}{2})$.
I want to find the density of just $f_Y$.
My problem is that I do not know the joint density of X and Y, so I do not know formulas to solve this. Any hints?
probability
$endgroup$
add a comment |
$begingroup$
I have the following conditional density function:
$f_{Y vert X = x}(y) sim Normal(0,frac{1}{x})$
I also know that $ X sim Gamma(frac{3}{2}, frac{1}{2})$.
I want to find the density of just $f_Y$.
My problem is that I do not know the joint density of X and Y, so I do not know formulas to solve this. Any hints?
probability
$endgroup$
I have the following conditional density function:
$f_{Y vert X = x}(y) sim Normal(0,frac{1}{x})$
I also know that $ X sim Gamma(frac{3}{2}, frac{1}{2})$.
I want to find the density of just $f_Y$.
My problem is that I do not know the joint density of X and Y, so I do not know formulas to solve this. Any hints?
probability
probability
asked Jan 23 at 13:06
qcc101qcc101
627213
627213
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
$$
f_Y(y)=int f_{X,Y}(x,y) mathrm{d}x=int f_{Y|X}(y|x)f_X(x) mathrm{d}x.
$$
By this formula, we get
$$
f_{Y|X}(y|x)f_X(x)=frac{x^{1/2}}{sqrt{2pi}}e^{-frac{xy^2}{2}}frac{2^{3/2}}{Gamma(3/2)}x^{1/2}e^{-2x},
$$ for $x>0$. Integrating over $x$ yields
$$
f_Y(y)=frac{16}{pi(y^2+4)^2}.
$$Identities $xGamma(x)=Gamma(x+1)$ and $Gamma(1/2)=sqrt{pi}$ is used for simplification.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084448%2ffinding-the-density-function-given-the-conditional%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$
f_Y(y)=int f_{X,Y}(x,y) mathrm{d}x=int f_{Y|X}(y|x)f_X(x) mathrm{d}x.
$$
By this formula, we get
$$
f_{Y|X}(y|x)f_X(x)=frac{x^{1/2}}{sqrt{2pi}}e^{-frac{xy^2}{2}}frac{2^{3/2}}{Gamma(3/2)}x^{1/2}e^{-2x},
$$ for $x>0$. Integrating over $x$ yields
$$
f_Y(y)=frac{16}{pi(y^2+4)^2}.
$$Identities $xGamma(x)=Gamma(x+1)$ and $Gamma(1/2)=sqrt{pi}$ is used for simplification.
$endgroup$
add a comment |
$begingroup$
Hint:
$$
f_Y(y)=int f_{X,Y}(x,y) mathrm{d}x=int f_{Y|X}(y|x)f_X(x) mathrm{d}x.
$$
By this formula, we get
$$
f_{Y|X}(y|x)f_X(x)=frac{x^{1/2}}{sqrt{2pi}}e^{-frac{xy^2}{2}}frac{2^{3/2}}{Gamma(3/2)}x^{1/2}e^{-2x},
$$ for $x>0$. Integrating over $x$ yields
$$
f_Y(y)=frac{16}{pi(y^2+4)^2}.
$$Identities $xGamma(x)=Gamma(x+1)$ and $Gamma(1/2)=sqrt{pi}$ is used for simplification.
$endgroup$
add a comment |
$begingroup$
Hint:
$$
f_Y(y)=int f_{X,Y}(x,y) mathrm{d}x=int f_{Y|X}(y|x)f_X(x) mathrm{d}x.
$$
By this formula, we get
$$
f_{Y|X}(y|x)f_X(x)=frac{x^{1/2}}{sqrt{2pi}}e^{-frac{xy^2}{2}}frac{2^{3/2}}{Gamma(3/2)}x^{1/2}e^{-2x},
$$ for $x>0$. Integrating over $x$ yields
$$
f_Y(y)=frac{16}{pi(y^2+4)^2}.
$$Identities $xGamma(x)=Gamma(x+1)$ and $Gamma(1/2)=sqrt{pi}$ is used for simplification.
$endgroup$
Hint:
$$
f_Y(y)=int f_{X,Y}(x,y) mathrm{d}x=int f_{Y|X}(y|x)f_X(x) mathrm{d}x.
$$
By this formula, we get
$$
f_{Y|X}(y|x)f_X(x)=frac{x^{1/2}}{sqrt{2pi}}e^{-frac{xy^2}{2}}frac{2^{3/2}}{Gamma(3/2)}x^{1/2}e^{-2x},
$$ for $x>0$. Integrating over $x$ yields
$$
f_Y(y)=frac{16}{pi(y^2+4)^2}.
$$Identities $xGamma(x)=Gamma(x+1)$ and $Gamma(1/2)=sqrt{pi}$ is used for simplification.
edited Jan 23 at 18:04
answered Jan 23 at 13:10


SongSong
17.3k21246
17.3k21246
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084448%2ffinding-the-density-function-given-the-conditional%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown