If $lim_{n rightarrow +infty} frac{|T'_n|}{|T_n|} = 1$, then $lim_{n rightarrow +infty} frac{|T_n Delta...












1












$begingroup$


Let ${T_n}_{n in mathbb{N}}$ be a Folner sequence and ${T'_n}_{n in mathbb{N}}$ be any sequences of subsets of $mathbb{Z}^d$ such that $lim_{n rightarrow +infty} frac{|T'_n|}{|T_n|} = 1$. Then, $lim_{n rightarrow +infty} frac{|T_n Delta T'_n|}{|T_n|} = 0$, where $Delta$ means the symmetric difference.



${T_n}$ being a Folner sequence means that for any $v in mathbb{Z}^d$, $lim_{n rightarrow +infty} frac{1}{|T_n|}|vT_n Delta T_n| = 0$, where $vT_n = {vt^{(n)} : t^{(n)} in T_n}$.



Using the fact that $A Delta C = (A Delta B) Delta (B Delta C)$, we can write, for any $v in mathbb{Z}^d$ and any $n in mathbb{N}$



begin{equation*}
T'_n Delta T_n = (T'_n Delta vT_n) Delta (vT_n Delta T_n).
end{equation*}



Then,



$$lim_{n rightarrow +infty} frac{|T_n Delta T'_n|}{|T_n|} = lim_{n rightarrow +infty} frac{|(T'_n Delta vT_n) Delta (vT_n Delta T_n)|}{|T_n|} $$.



As ${T_n}_{n in mathbb{N}}$ is Folner, we know that $lim_{n rightarrow +infty} frac{1}{|T_n|}|vT_n Delta T_n| = 0$, for any $v in mathbb{Z}^d$.



I guess I need to find a suitable $v$ such that $lim_{n rightarrow +infty} frac{|T'_n Delta vT_n|}{T_n} = 0$ and I guess the existence of this $v$ is guaranteed by the hypothesis that $lim_{n rightarrow +infty} frac{|T'_n|}{|T_n|} = 1$, but I am not sure if this is right and how I can justify that.



Could someone help me?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let ${T_n}_{n in mathbb{N}}$ be a Folner sequence and ${T'_n}_{n in mathbb{N}}$ be any sequences of subsets of $mathbb{Z}^d$ such that $lim_{n rightarrow +infty} frac{|T'_n|}{|T_n|} = 1$. Then, $lim_{n rightarrow +infty} frac{|T_n Delta T'_n|}{|T_n|} = 0$, where $Delta$ means the symmetric difference.



    ${T_n}$ being a Folner sequence means that for any $v in mathbb{Z}^d$, $lim_{n rightarrow +infty} frac{1}{|T_n|}|vT_n Delta T_n| = 0$, where $vT_n = {vt^{(n)} : t^{(n)} in T_n}$.



    Using the fact that $A Delta C = (A Delta B) Delta (B Delta C)$, we can write, for any $v in mathbb{Z}^d$ and any $n in mathbb{N}$



    begin{equation*}
    T'_n Delta T_n = (T'_n Delta vT_n) Delta (vT_n Delta T_n).
    end{equation*}



    Then,



    $$lim_{n rightarrow +infty} frac{|T_n Delta T'_n|}{|T_n|} = lim_{n rightarrow +infty} frac{|(T'_n Delta vT_n) Delta (vT_n Delta T_n)|}{|T_n|} $$.



    As ${T_n}_{n in mathbb{N}}$ is Folner, we know that $lim_{n rightarrow +infty} frac{1}{|T_n|}|vT_n Delta T_n| = 0$, for any $v in mathbb{Z}^d$.



    I guess I need to find a suitable $v$ such that $lim_{n rightarrow +infty} frac{|T'_n Delta vT_n|}{T_n} = 0$ and I guess the existence of this $v$ is guaranteed by the hypothesis that $lim_{n rightarrow +infty} frac{|T'_n|}{|T_n|} = 1$, but I am not sure if this is right and how I can justify that.



    Could someone help me?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let ${T_n}_{n in mathbb{N}}$ be a Folner sequence and ${T'_n}_{n in mathbb{N}}$ be any sequences of subsets of $mathbb{Z}^d$ such that $lim_{n rightarrow +infty} frac{|T'_n|}{|T_n|} = 1$. Then, $lim_{n rightarrow +infty} frac{|T_n Delta T'_n|}{|T_n|} = 0$, where $Delta$ means the symmetric difference.



      ${T_n}$ being a Folner sequence means that for any $v in mathbb{Z}^d$, $lim_{n rightarrow +infty} frac{1}{|T_n|}|vT_n Delta T_n| = 0$, where $vT_n = {vt^{(n)} : t^{(n)} in T_n}$.



      Using the fact that $A Delta C = (A Delta B) Delta (B Delta C)$, we can write, for any $v in mathbb{Z}^d$ and any $n in mathbb{N}$



      begin{equation*}
      T'_n Delta T_n = (T'_n Delta vT_n) Delta (vT_n Delta T_n).
      end{equation*}



      Then,



      $$lim_{n rightarrow +infty} frac{|T_n Delta T'_n|}{|T_n|} = lim_{n rightarrow +infty} frac{|(T'_n Delta vT_n) Delta (vT_n Delta T_n)|}{|T_n|} $$.



      As ${T_n}_{n in mathbb{N}}$ is Folner, we know that $lim_{n rightarrow +infty} frac{1}{|T_n|}|vT_n Delta T_n| = 0$, for any $v in mathbb{Z}^d$.



      I guess I need to find a suitable $v$ such that $lim_{n rightarrow +infty} frac{|T'_n Delta vT_n|}{T_n} = 0$ and I guess the existence of this $v$ is guaranteed by the hypothesis that $lim_{n rightarrow +infty} frac{|T'_n|}{|T_n|} = 1$, but I am not sure if this is right and how I can justify that.



      Could someone help me?










      share|cite|improve this question











      $endgroup$




      Let ${T_n}_{n in mathbb{N}}$ be a Folner sequence and ${T'_n}_{n in mathbb{N}}$ be any sequences of subsets of $mathbb{Z}^d$ such that $lim_{n rightarrow +infty} frac{|T'_n|}{|T_n|} = 1$. Then, $lim_{n rightarrow +infty} frac{|T_n Delta T'_n|}{|T_n|} = 0$, where $Delta$ means the symmetric difference.



      ${T_n}$ being a Folner sequence means that for any $v in mathbb{Z}^d$, $lim_{n rightarrow +infty} frac{1}{|T_n|}|vT_n Delta T_n| = 0$, where $vT_n = {vt^{(n)} : t^{(n)} in T_n}$.



      Using the fact that $A Delta C = (A Delta B) Delta (B Delta C)$, we can write, for any $v in mathbb{Z}^d$ and any $n in mathbb{N}$



      begin{equation*}
      T'_n Delta T_n = (T'_n Delta vT_n) Delta (vT_n Delta T_n).
      end{equation*}



      Then,



      $$lim_{n rightarrow +infty} frac{|T_n Delta T'_n|}{|T_n|} = lim_{n rightarrow +infty} frac{|(T'_n Delta vT_n) Delta (vT_n Delta T_n)|}{|T_n|} $$.



      As ${T_n}_{n in mathbb{N}}$ is Folner, we know that $lim_{n rightarrow +infty} frac{1}{|T_n|}|vT_n Delta T_n| = 0$, for any $v in mathbb{Z}^d$.



      I guess I need to find a suitable $v$ such that $lim_{n rightarrow +infty} frac{|T'_n Delta vT_n|}{T_n} = 0$ and I guess the existence of this $v$ is guaranteed by the hypothesis that $lim_{n rightarrow +infty} frac{|T'_n|}{|T_n|} = 1$, but I am not sure if this is right and how I can justify that.



      Could someone help me?







      sequences-and-series group-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 10:41









      William Elliot

      8,6672720




      8,6672720










      asked Jan 23 at 10:27









      Luísa BorsatoLuísa Borsato

      1,501315




      1,501315






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084296%2fif-lim-n-rightarrow-infty-fract-nt-n-1-then-lim-n-right%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084296%2fif-lim-n-rightarrow-infty-fract-nt-n-1-then-lim-n-right%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith