If two different statistics converge to a same function, does it mean both of them converge to a same...












0












$begingroup$


Let $A(x)$ be a (deterministic) function, and let $A_n(x)$ and $A_n^*(x)$ be two different estimators of $A(x)$. Define $B_n=sup|A_n-A|$ and $B_n^*=sup|A_n^*-A|$. If for a sequence $(c_n)$ and a distribution function $F$




  1. $B_n=o_pleft(frac{1}{c_n}right)$

  2. $limPr(c_n B_nleq x)=F(x)$

  3. $sup|A_n-A_n^*|=o_pleft(frac{1}{c_n}right)$


does it mean $limPr(c_n B_n^*leq x)=F(x)$?



My answer is "yes", but my proof is kind of strange. Since we have
begin{eqnarray*}
B_n^*leqsup|A_n^*-A_n|+sup|A_n-A|=o_pleft(frac{1}{c_n}right),
end{eqnarray*}

then it is abvious that $|B_n-B_n^*|=o_pleft(frac{1}{c_n}right)$. From this, if $n$ is large enough, then
begin{eqnarray*}
Pr(c_n B_n^*leq x)=Pr(c_n B_nleq x)rightarrow F(x).
end{eqnarray*}

I think, my intuition is right, but the proof is too heuristic and not firm. Do you guys have any idea what is my mistake and how to fix it? Thank you so much










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $A(x)$ be a (deterministic) function, and let $A_n(x)$ and $A_n^*(x)$ be two different estimators of $A(x)$. Define $B_n=sup|A_n-A|$ and $B_n^*=sup|A_n^*-A|$. If for a sequence $(c_n)$ and a distribution function $F$




    1. $B_n=o_pleft(frac{1}{c_n}right)$

    2. $limPr(c_n B_nleq x)=F(x)$

    3. $sup|A_n-A_n^*|=o_pleft(frac{1}{c_n}right)$


    does it mean $limPr(c_n B_n^*leq x)=F(x)$?



    My answer is "yes", but my proof is kind of strange. Since we have
    begin{eqnarray*}
    B_n^*leqsup|A_n^*-A_n|+sup|A_n-A|=o_pleft(frac{1}{c_n}right),
    end{eqnarray*}

    then it is abvious that $|B_n-B_n^*|=o_pleft(frac{1}{c_n}right)$. From this, if $n$ is large enough, then
    begin{eqnarray*}
    Pr(c_n B_n^*leq x)=Pr(c_n B_nleq x)rightarrow F(x).
    end{eqnarray*}

    I think, my intuition is right, but the proof is too heuristic and not firm. Do you guys have any idea what is my mistake and how to fix it? Thank you so much










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $A(x)$ be a (deterministic) function, and let $A_n(x)$ and $A_n^*(x)$ be two different estimators of $A(x)$. Define $B_n=sup|A_n-A|$ and $B_n^*=sup|A_n^*-A|$. If for a sequence $(c_n)$ and a distribution function $F$




      1. $B_n=o_pleft(frac{1}{c_n}right)$

      2. $limPr(c_n B_nleq x)=F(x)$

      3. $sup|A_n-A_n^*|=o_pleft(frac{1}{c_n}right)$


      does it mean $limPr(c_n B_n^*leq x)=F(x)$?



      My answer is "yes", but my proof is kind of strange. Since we have
      begin{eqnarray*}
      B_n^*leqsup|A_n^*-A_n|+sup|A_n-A|=o_pleft(frac{1}{c_n}right),
      end{eqnarray*}

      then it is abvious that $|B_n-B_n^*|=o_pleft(frac{1}{c_n}right)$. From this, if $n$ is large enough, then
      begin{eqnarray*}
      Pr(c_n B_n^*leq x)=Pr(c_n B_nleq x)rightarrow F(x).
      end{eqnarray*}

      I think, my intuition is right, but the proof is too heuristic and not firm. Do you guys have any idea what is my mistake and how to fix it? Thank you so much










      share|cite|improve this question









      $endgroup$




      Let $A(x)$ be a (deterministic) function, and let $A_n(x)$ and $A_n^*(x)$ be two different estimators of $A(x)$. Define $B_n=sup|A_n-A|$ and $B_n^*=sup|A_n^*-A|$. If for a sequence $(c_n)$ and a distribution function $F$




      1. $B_n=o_pleft(frac{1}{c_n}right)$

      2. $limPr(c_n B_nleq x)=F(x)$

      3. $sup|A_n-A_n^*|=o_pleft(frac{1}{c_n}right)$


      does it mean $limPr(c_n B_n^*leq x)=F(x)$?



      My answer is "yes", but my proof is kind of strange. Since we have
      begin{eqnarray*}
      B_n^*leqsup|A_n^*-A_n|+sup|A_n-A|=o_pleft(frac{1}{c_n}right),
      end{eqnarray*}

      then it is abvious that $|B_n-B_n^*|=o_pleft(frac{1}{c_n}right)$. From this, if $n$ is large enough, then
      begin{eqnarray*}
      Pr(c_n B_n^*leq x)=Pr(c_n B_nleq x)rightarrow F(x).
      end{eqnarray*}

      I think, my intuition is right, but the proof is too heuristic and not firm. Do you guys have any idea what is my mistake and how to fix it? Thank you so much







      probability sequences-and-series statistics convergence random-variables






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 23 at 7:27









      Rizky Reza FujisakiRizky Reza Fujisaki

      44429




      44429






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.



          Wikipedia defines the notation $o_p$ as follows:



          $X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.



          With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.



          Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
            $endgroup$
            – Rizky Reza Fujisaki
            Jan 24 at 2:21











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084185%2fif-two-different-statistics-converge-to-a-same-function-does-it-mean-both-of-th%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.



          Wikipedia defines the notation $o_p$ as follows:



          $X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.



          With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.



          Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
            $endgroup$
            – Rizky Reza Fujisaki
            Jan 24 at 2:21
















          0












          $begingroup$

          If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.



          Wikipedia defines the notation $o_p$ as follows:



          $X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.



          With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.



          Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
            $endgroup$
            – Rizky Reza Fujisaki
            Jan 24 at 2:21














          0












          0








          0





          $begingroup$

          If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.



          Wikipedia defines the notation $o_p$ as follows:



          $X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.



          With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.



          Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.






          share|cite|improve this answer











          $endgroup$



          If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.



          Wikipedia defines the notation $o_p$ as follows:



          $X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.



          With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.



          Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 24 at 17:18

























          answered Jan 23 at 8:38









          Angela RichardsonAngela Richardson

          5,40411734




          5,40411734












          • $begingroup$
            Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
            $endgroup$
            – Rizky Reza Fujisaki
            Jan 24 at 2:21


















          • $begingroup$
            Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
            $endgroup$
            – Rizky Reza Fujisaki
            Jan 24 at 2:21
















          $begingroup$
          Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
          $endgroup$
          – Rizky Reza Fujisaki
          Jan 24 at 2:21




          $begingroup$
          Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
          $endgroup$
          – Rizky Reza Fujisaki
          Jan 24 at 2:21


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084185%2fif-two-different-statistics-converge-to-a-same-function-does-it-mean-both-of-th%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          Npm cannot find a required file even through it is in the searched directory