If two different statistics converge to a same function, does it mean both of them converge to a same...
$begingroup$
Let $A(x)$ be a (deterministic) function, and let $A_n(x)$ and $A_n^*(x)$ be two different estimators of $A(x)$. Define $B_n=sup|A_n-A|$ and $B_n^*=sup|A_n^*-A|$. If for a sequence $(c_n)$ and a distribution function $F$
- $B_n=o_pleft(frac{1}{c_n}right)$
- $limPr(c_n B_nleq x)=F(x)$
- $sup|A_n-A_n^*|=o_pleft(frac{1}{c_n}right)$
does it mean $limPr(c_n B_n^*leq x)=F(x)$?
My answer is "yes", but my proof is kind of strange. Since we have
begin{eqnarray*}
B_n^*leqsup|A_n^*-A_n|+sup|A_n-A|=o_pleft(frac{1}{c_n}right),
end{eqnarray*}
then it is abvious that $|B_n-B_n^*|=o_pleft(frac{1}{c_n}right)$. From this, if $n$ is large enough, then
begin{eqnarray*}
Pr(c_n B_n^*leq x)=Pr(c_n B_nleq x)rightarrow F(x).
end{eqnarray*}
I think, my intuition is right, but the proof is too heuristic and not firm. Do you guys have any idea what is my mistake and how to fix it? Thank you so much
probability sequences-and-series statistics convergence random-variables
$endgroup$
add a comment |
$begingroup$
Let $A(x)$ be a (deterministic) function, and let $A_n(x)$ and $A_n^*(x)$ be two different estimators of $A(x)$. Define $B_n=sup|A_n-A|$ and $B_n^*=sup|A_n^*-A|$. If for a sequence $(c_n)$ and a distribution function $F$
- $B_n=o_pleft(frac{1}{c_n}right)$
- $limPr(c_n B_nleq x)=F(x)$
- $sup|A_n-A_n^*|=o_pleft(frac{1}{c_n}right)$
does it mean $limPr(c_n B_n^*leq x)=F(x)$?
My answer is "yes", but my proof is kind of strange. Since we have
begin{eqnarray*}
B_n^*leqsup|A_n^*-A_n|+sup|A_n-A|=o_pleft(frac{1}{c_n}right),
end{eqnarray*}
then it is abvious that $|B_n-B_n^*|=o_pleft(frac{1}{c_n}right)$. From this, if $n$ is large enough, then
begin{eqnarray*}
Pr(c_n B_n^*leq x)=Pr(c_n B_nleq x)rightarrow F(x).
end{eqnarray*}
I think, my intuition is right, but the proof is too heuristic and not firm. Do you guys have any idea what is my mistake and how to fix it? Thank you so much
probability sequences-and-series statistics convergence random-variables
$endgroup$
add a comment |
$begingroup$
Let $A(x)$ be a (deterministic) function, and let $A_n(x)$ and $A_n^*(x)$ be two different estimators of $A(x)$. Define $B_n=sup|A_n-A|$ and $B_n^*=sup|A_n^*-A|$. If for a sequence $(c_n)$ and a distribution function $F$
- $B_n=o_pleft(frac{1}{c_n}right)$
- $limPr(c_n B_nleq x)=F(x)$
- $sup|A_n-A_n^*|=o_pleft(frac{1}{c_n}right)$
does it mean $limPr(c_n B_n^*leq x)=F(x)$?
My answer is "yes", but my proof is kind of strange. Since we have
begin{eqnarray*}
B_n^*leqsup|A_n^*-A_n|+sup|A_n-A|=o_pleft(frac{1}{c_n}right),
end{eqnarray*}
then it is abvious that $|B_n-B_n^*|=o_pleft(frac{1}{c_n}right)$. From this, if $n$ is large enough, then
begin{eqnarray*}
Pr(c_n B_n^*leq x)=Pr(c_n B_nleq x)rightarrow F(x).
end{eqnarray*}
I think, my intuition is right, but the proof is too heuristic and not firm. Do you guys have any idea what is my mistake and how to fix it? Thank you so much
probability sequences-and-series statistics convergence random-variables
$endgroup$
Let $A(x)$ be a (deterministic) function, and let $A_n(x)$ and $A_n^*(x)$ be two different estimators of $A(x)$. Define $B_n=sup|A_n-A|$ and $B_n^*=sup|A_n^*-A|$. If for a sequence $(c_n)$ and a distribution function $F$
- $B_n=o_pleft(frac{1}{c_n}right)$
- $limPr(c_n B_nleq x)=F(x)$
- $sup|A_n-A_n^*|=o_pleft(frac{1}{c_n}right)$
does it mean $limPr(c_n B_n^*leq x)=F(x)$?
My answer is "yes", but my proof is kind of strange. Since we have
begin{eqnarray*}
B_n^*leqsup|A_n^*-A_n|+sup|A_n-A|=o_pleft(frac{1}{c_n}right),
end{eqnarray*}
then it is abvious that $|B_n-B_n^*|=o_pleft(frac{1}{c_n}right)$. From this, if $n$ is large enough, then
begin{eqnarray*}
Pr(c_n B_n^*leq x)=Pr(c_n B_nleq x)rightarrow F(x).
end{eqnarray*}
I think, my intuition is right, but the proof is too heuristic and not firm. Do you guys have any idea what is my mistake and how to fix it? Thank you so much
probability sequences-and-series statistics convergence random-variables
probability sequences-and-series statistics convergence random-variables
asked Jan 23 at 7:27
Rizky Reza FujisakiRizky Reza Fujisaki
44429
44429
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.
Wikipedia defines the notation $o_p$ as follows:
$X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.
With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.
Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.
$endgroup$
$begingroup$
Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
$endgroup$
– Rizky Reza Fujisaki
Jan 24 at 2:21
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084185%2fif-two-different-statistics-converge-to-a-same-function-does-it-mean-both-of-th%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.
Wikipedia defines the notation $o_p$ as follows:
$X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.
With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.
Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.
$endgroup$
$begingroup$
Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
$endgroup$
– Rizky Reza Fujisaki
Jan 24 at 2:21
add a comment |
$begingroup$
If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.
Wikipedia defines the notation $o_p$ as follows:
$X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.
With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.
Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.
$endgroup$
$begingroup$
Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
$endgroup$
– Rizky Reza Fujisaki
Jan 24 at 2:21
add a comment |
$begingroup$
If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.
Wikipedia defines the notation $o_p$ as follows:
$X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.
With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.
Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.
$endgroup$
If $|B_n-B_n^{*}| = O_p left( frac{1}{c_n} right)$ then $|c_nB_n-c_nB_n^{*}| = O_p left( 1 right)$. Since $|c_nB_n-c_nB_n^{*}|$ does not converge in probability to zero for large $n$, you cannot conclude that $Pr(c_nB_n^{*}leq x)$ converges towards $Pr(c_nB_nleq x)$.
Wikipedia defines the notation $o_p$ as follows:
$X_n=o_p(a_n) text{ if } lim_{nrightarrow infty}mathrm{Pr}left(left|frac{X_n}{a_n}right|geq epsilonright)=0$.
With this notation it can be deduced that $F(x)=0$ when $x<0$, that $F(x)=1$ when $x>0$ and that $mathrm{Pr}(c_nB_n*leq x)=F(x)$ when $x ne 0$. However there exists a counterexample in the case when $x=0$.
Let $A(x)=0$, $A_n(x)=1$, $A_n^* (x)=0$ and $c_n=frac{1}{n}$. It can be verified that all three conditions hold. Note that $c_nB_n=frac{1}{n}$ and hence that $F(0)=lim_{nrightarrowinfty}mathrm{Pr}(frac{1}{n}leq 0)=0$. On the other hand, $mathrm{Pr}(c_nB_n^* leq 0)=1$ since $B_n^*=0$. It follows that $lim_{nrightarrowinfty}mathrm{Pr}(c_nB_n^*leq 0)=1 neq F(0)$.
edited Jan 24 at 17:18
answered Jan 23 at 8:38


Angela RichardsonAngela Richardson
5,40411734
5,40411734
$begingroup$
Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
$endgroup$
– Rizky Reza Fujisaki
Jan 24 at 2:21
add a comment |
$begingroup$
Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
$endgroup$
– Rizky Reza Fujisaki
Jan 24 at 2:21
$begingroup$
Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
$endgroup$
– Rizky Reza Fujisaki
Jan 24 at 2:21
$begingroup$
Thank you so much for answering, but, it is not big-O, it's $|B_n-B_n^*|=o_p(c_n^{-1})$, little-o, so $|c_n B_n-c_n B_n^*|=o_p(1)$, and it will converge to $0$ in probability, so is my argument valid?
$endgroup$
– Rizky Reza Fujisaki
Jan 24 at 2:21
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084185%2fif-two-different-statistics-converge-to-a-same-function-does-it-mean-both-of-th%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown