Modular Exponentiation with unknown base
$begingroup$
Consider $x^aequiv1 pmod n$.
Is there a general way to solve for $x$, given $a$ and $n$?
Would knowing the factorization of $n$ make it easier?
modular-arithmetic
$endgroup$
add a comment |
$begingroup$
Consider $x^aequiv1 pmod n$.
Is there a general way to solve for $x$, given $a$ and $n$?
Would knowing the factorization of $n$ make it easier?
modular-arithmetic
$endgroup$
add a comment |
$begingroup$
Consider $x^aequiv1 pmod n$.
Is there a general way to solve for $x$, given $a$ and $n$?
Would knowing the factorization of $n$ make it easier?
modular-arithmetic
$endgroup$
Consider $x^aequiv1 pmod n$.
Is there a general way to solve for $x$, given $a$ and $n$?
Would knowing the factorization of $n$ make it easier?
modular-arithmetic
modular-arithmetic
asked Jan 23 at 9:03
Ruan SunkelRuan Sunkel
385
385
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $n=p_1^{e_1}cdots p_r^{e_r}$ is the factorization of $n$ into prime powers, then you can solve simultaneously (by the Chinese remainder theorem)
$$x^aequiv 1mod p_i^{e_i},quad 1leq ileq r,$$
and then assemble the solutions together. This solution is unique in the range of $0$ to $n-1$.
In particular, if $e_i=1$, then you can use Fermat's little theorem, $x^{p_i-1}equiv 1mod p_i$ to simplify the associated congruence.
$endgroup$
$begingroup$
For $e_i > 1$, we can use $x^{phi(p_i^{e_i})} equiv 1 mod{p_i^{e_i}}$, where $phi(p_i^{e_i}) = p_i^{e_i}-p_i^{e_i-1}$.
$endgroup$
– Dirk Liebhold
Jan 23 at 9:37
$begingroup$
Thanks guys, may I ask for a simple example?
$endgroup$
– Ruan Sunkel
Jan 23 at 9:40
$begingroup$
Dirk: Indeed, the specific congruence $x^aequiv 1 mod n$ allows more to say.
$endgroup$
– Wuestenfux
Jan 23 at 9:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084245%2fmodular-exponentiation-with-unknown-base%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $n=p_1^{e_1}cdots p_r^{e_r}$ is the factorization of $n$ into prime powers, then you can solve simultaneously (by the Chinese remainder theorem)
$$x^aequiv 1mod p_i^{e_i},quad 1leq ileq r,$$
and then assemble the solutions together. This solution is unique in the range of $0$ to $n-1$.
In particular, if $e_i=1$, then you can use Fermat's little theorem, $x^{p_i-1}equiv 1mod p_i$ to simplify the associated congruence.
$endgroup$
$begingroup$
For $e_i > 1$, we can use $x^{phi(p_i^{e_i})} equiv 1 mod{p_i^{e_i}}$, where $phi(p_i^{e_i}) = p_i^{e_i}-p_i^{e_i-1}$.
$endgroup$
– Dirk Liebhold
Jan 23 at 9:37
$begingroup$
Thanks guys, may I ask for a simple example?
$endgroup$
– Ruan Sunkel
Jan 23 at 9:40
$begingroup$
Dirk: Indeed, the specific congruence $x^aequiv 1 mod n$ allows more to say.
$endgroup$
– Wuestenfux
Jan 23 at 9:44
add a comment |
$begingroup$
If $n=p_1^{e_1}cdots p_r^{e_r}$ is the factorization of $n$ into prime powers, then you can solve simultaneously (by the Chinese remainder theorem)
$$x^aequiv 1mod p_i^{e_i},quad 1leq ileq r,$$
and then assemble the solutions together. This solution is unique in the range of $0$ to $n-1$.
In particular, if $e_i=1$, then you can use Fermat's little theorem, $x^{p_i-1}equiv 1mod p_i$ to simplify the associated congruence.
$endgroup$
$begingroup$
For $e_i > 1$, we can use $x^{phi(p_i^{e_i})} equiv 1 mod{p_i^{e_i}}$, where $phi(p_i^{e_i}) = p_i^{e_i}-p_i^{e_i-1}$.
$endgroup$
– Dirk Liebhold
Jan 23 at 9:37
$begingroup$
Thanks guys, may I ask for a simple example?
$endgroup$
– Ruan Sunkel
Jan 23 at 9:40
$begingroup$
Dirk: Indeed, the specific congruence $x^aequiv 1 mod n$ allows more to say.
$endgroup$
– Wuestenfux
Jan 23 at 9:44
add a comment |
$begingroup$
If $n=p_1^{e_1}cdots p_r^{e_r}$ is the factorization of $n$ into prime powers, then you can solve simultaneously (by the Chinese remainder theorem)
$$x^aequiv 1mod p_i^{e_i},quad 1leq ileq r,$$
and then assemble the solutions together. This solution is unique in the range of $0$ to $n-1$.
In particular, if $e_i=1$, then you can use Fermat's little theorem, $x^{p_i-1}equiv 1mod p_i$ to simplify the associated congruence.
$endgroup$
If $n=p_1^{e_1}cdots p_r^{e_r}$ is the factorization of $n$ into prime powers, then you can solve simultaneously (by the Chinese remainder theorem)
$$x^aequiv 1mod p_i^{e_i},quad 1leq ileq r,$$
and then assemble the solutions together. This solution is unique in the range of $0$ to $n-1$.
In particular, if $e_i=1$, then you can use Fermat's little theorem, $x^{p_i-1}equiv 1mod p_i$ to simplify the associated congruence.
answered Jan 23 at 9:15
WuestenfuxWuestenfux
4,9921513
4,9921513
$begingroup$
For $e_i > 1$, we can use $x^{phi(p_i^{e_i})} equiv 1 mod{p_i^{e_i}}$, where $phi(p_i^{e_i}) = p_i^{e_i}-p_i^{e_i-1}$.
$endgroup$
– Dirk Liebhold
Jan 23 at 9:37
$begingroup$
Thanks guys, may I ask for a simple example?
$endgroup$
– Ruan Sunkel
Jan 23 at 9:40
$begingroup$
Dirk: Indeed, the specific congruence $x^aequiv 1 mod n$ allows more to say.
$endgroup$
– Wuestenfux
Jan 23 at 9:44
add a comment |
$begingroup$
For $e_i > 1$, we can use $x^{phi(p_i^{e_i})} equiv 1 mod{p_i^{e_i}}$, where $phi(p_i^{e_i}) = p_i^{e_i}-p_i^{e_i-1}$.
$endgroup$
– Dirk Liebhold
Jan 23 at 9:37
$begingroup$
Thanks guys, may I ask for a simple example?
$endgroup$
– Ruan Sunkel
Jan 23 at 9:40
$begingroup$
Dirk: Indeed, the specific congruence $x^aequiv 1 mod n$ allows more to say.
$endgroup$
– Wuestenfux
Jan 23 at 9:44
$begingroup$
For $e_i > 1$, we can use $x^{phi(p_i^{e_i})} equiv 1 mod{p_i^{e_i}}$, where $phi(p_i^{e_i}) = p_i^{e_i}-p_i^{e_i-1}$.
$endgroup$
– Dirk Liebhold
Jan 23 at 9:37
$begingroup$
For $e_i > 1$, we can use $x^{phi(p_i^{e_i})} equiv 1 mod{p_i^{e_i}}$, where $phi(p_i^{e_i}) = p_i^{e_i}-p_i^{e_i-1}$.
$endgroup$
– Dirk Liebhold
Jan 23 at 9:37
$begingroup$
Thanks guys, may I ask for a simple example?
$endgroup$
– Ruan Sunkel
Jan 23 at 9:40
$begingroup$
Thanks guys, may I ask for a simple example?
$endgroup$
– Ruan Sunkel
Jan 23 at 9:40
$begingroup$
Dirk: Indeed, the specific congruence $x^aequiv 1 mod n$ allows more to say.
$endgroup$
– Wuestenfux
Jan 23 at 9:44
$begingroup$
Dirk: Indeed, the specific congruence $x^aequiv 1 mod n$ allows more to say.
$endgroup$
– Wuestenfux
Jan 23 at 9:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084245%2fmodular-exponentiation-with-unknown-base%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown