Laurent series of $ frac{z-12}{z^2 + z - 6}$ for $|z-1|>4$











up vote
1
down vote

favorite













How do you find the Laurent series for $f(z) = dfrac{z-12}{z^2 + z - 6}$ valid for $|z-1|>4$?




I know that $f(z) = dfrac{z-12}{z^2 + z - 6} = dfrac{-2}{z-2} + dfrac{3}{z+3}$



It is easy for me to extract a series for $dfrac{3}{z+3}$, but have no idea how to do it for $dfrac{-2}{z-2}$.



Please help? Thank you!










share|cite|improve this question




















  • 2




    BTW, $f$ is not a polynomial.
    – lhf
    yesterday

















up vote
1
down vote

favorite













How do you find the Laurent series for $f(z) = dfrac{z-12}{z^2 + z - 6}$ valid for $|z-1|>4$?




I know that $f(z) = dfrac{z-12}{z^2 + z - 6} = dfrac{-2}{z-2} + dfrac{3}{z+3}$



It is easy for me to extract a series for $dfrac{3}{z+3}$, but have no idea how to do it for $dfrac{-2}{z-2}$.



Please help? Thank you!










share|cite|improve this question




















  • 2




    BTW, $f$ is not a polynomial.
    – lhf
    yesterday















up vote
1
down vote

favorite









up vote
1
down vote

favorite












How do you find the Laurent series for $f(z) = dfrac{z-12}{z^2 + z - 6}$ valid for $|z-1|>4$?




I know that $f(z) = dfrac{z-12}{z^2 + z - 6} = dfrac{-2}{z-2} + dfrac{3}{z+3}$



It is easy for me to extract a series for $dfrac{3}{z+3}$, but have no idea how to do it for $dfrac{-2}{z-2}$.



Please help? Thank you!










share|cite|improve this question
















How do you find the Laurent series for $f(z) = dfrac{z-12}{z^2 + z - 6}$ valid for $|z-1|>4$?




I know that $f(z) = dfrac{z-12}{z^2 + z - 6} = dfrac{-2}{z-2} + dfrac{3}{z+3}$



It is easy for me to extract a series for $dfrac{3}{z+3}$, but have no idea how to do it for $dfrac{-2}{z-2}$.



Please help? Thank you!







complex-analysis laurent-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Robert Z

90k1056128




90k1056128










asked yesterday









Jonelle Yu

1696




1696








  • 2




    BTW, $f$ is not a polynomial.
    – lhf
    yesterday
















  • 2




    BTW, $f$ is not a polynomial.
    – lhf
    yesterday










2




2




BTW, $f$ is not a polynomial.
– lhf
yesterday






BTW, $f$ is not a polynomial.
– lhf
yesterday












2 Answers
2






active

oldest

votes

















up vote
1
down vote













Hint. Starting from your partial fraction decomposition, we have that
$$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.






share|cite|improve this answer




























    up vote
    0
    down vote













    Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














       

      draft saved


      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004916%2flaurent-series-of-fracz-12z2-z-6-for-z-14%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      1
      down vote













      Hint. Starting from your partial fraction decomposition, we have that
      $$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
      where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.






      share|cite|improve this answer

























        up vote
        1
        down vote













        Hint. Starting from your partial fraction decomposition, we have that
        $$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
        where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.






        share|cite|improve this answer























          up vote
          1
          down vote










          up vote
          1
          down vote









          Hint. Starting from your partial fraction decomposition, we have that
          $$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
          where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.






          share|cite|improve this answer












          Hint. Starting from your partial fraction decomposition, we have that
          $$frac{z-12}{z^2 + z - 6} = -frac{2}{u-1} + frac{3}{u+4}=-frac{2/u}{1-1/u} + frac{3/u}{1+4/u}$$
          where $u=z-1$. Now note that $1/|u|<4/|u|<1$ when $|z-1|>4$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          Robert Z

          90k1056128




          90k1056128






















              up vote
              0
              down vote













              Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}






              share|cite|improve this answer

























                up vote
                0
                down vote













                Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}






                  share|cite|improve this answer












                  Use the fact thatbegin{align}frac{-2}{z-2}&=frac{-2}{-1+(z-1)}\&=frac2{1-(z-1)}\&=-2sum_{n=-infty}^{-1}(z-1)^nend{align}and thatbegin{align}frac3{z+3}&=frac3{4+(z-1)}\&=frac34timesfrac1{1+frac{z-1}4}\&=-frac34sum_{n=-infty}^{-1}frac{(-1)^n}{4^n}(z-1)^n.end{align}







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  José Carlos Santos

                  139k18111203




                  139k18111203






























                       

                      draft saved


                      draft discarded



















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004916%2flaurent-series-of-fracz-12z2-z-6-for-z-14%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      'app-layout' is not a known element: how to share Component with different Modules

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      WPF add header to Image with URL pettitions [duplicate]