error in data shape with conv2D layer keras












0















i am a biginner in neural networks,
i get the following error when running fit,



ValueError: Error when checking target: expected conv2d_1 to have shape (64, 222, 222) but got array with shape (1, 224, 224)



i use grayscale images, as far as i know i think i'm shaping the input correctly.
i cant get what i'm doing wrong.



here is a snippet of the network



network model:



def convLayer(channels):
return

Conv2D(channels,kernel_size=3,activation='relu',
kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.01),
data_format='channels_first')

class est_net():

def __init__(self, input=None):
if input is None:
input=Input(shape=(1,224,224))
self.input=input

conv1_1 = convLayer(64)(self.input)

self.output = conv1_1
self.CDECNN = Model(inputs=self.input, outputs=self.output)
print(self.CDECNN.summary())


reading data:



def __iter__(self):
files=self.img_files
for f in files:
if f==".DS_Store":
continue
img=cv2.imread(os.path.join(self.img_path,f),cv2.COLOR_BGR2GRAY)
img=img.reshape(1, img.shape[0], img.shape[1])
if img is None:
print("unable to read image %s." % f)
exit(0)
gt_file='GT_'+f.split('.')[0]+'.mat'
gt=sio.loadmat(os.path.join(self.gt_path,gt_file))['d_map']
gt=gt.reshape(1, gt.shape[0], gt.shape[1])
yield(img,gt)


training:



input_img= #representing input segment images to be fed to the network
actual_dgt= #representing the actual dot-map ground-truth

for i, (img, dgt) in enumerate(training_DS):
input_img.append(img)
actual_dgt.append(dgt)

#initializing training parameters
sgd=optimizers.SGD(lr=0.01, decay=0.0005, momentum=0.9)

#compiling the network and defining the loss method
net.CDECNN.compile(optimizer=sgd, loss='mean_squared_error')

#training CDECNN network on training data
training_log=net.CDECNN.fit(np.array(input_img), np.array(actual_dgt), batch_size=1, epochs=5)









share|improve this question





























    0















    i am a biginner in neural networks,
    i get the following error when running fit,



    ValueError: Error when checking target: expected conv2d_1 to have shape (64, 222, 222) but got array with shape (1, 224, 224)



    i use grayscale images, as far as i know i think i'm shaping the input correctly.
    i cant get what i'm doing wrong.



    here is a snippet of the network



    network model:



    def convLayer(channels):
    return

    Conv2D(channels,kernel_size=3,activation='relu',
    kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.01),
    data_format='channels_first')

    class est_net():

    def __init__(self, input=None):
    if input is None:
    input=Input(shape=(1,224,224))
    self.input=input

    conv1_1 = convLayer(64)(self.input)

    self.output = conv1_1
    self.CDECNN = Model(inputs=self.input, outputs=self.output)
    print(self.CDECNN.summary())


    reading data:



    def __iter__(self):
    files=self.img_files
    for f in files:
    if f==".DS_Store":
    continue
    img=cv2.imread(os.path.join(self.img_path,f),cv2.COLOR_BGR2GRAY)
    img=img.reshape(1, img.shape[0], img.shape[1])
    if img is None:
    print("unable to read image %s." % f)
    exit(0)
    gt_file='GT_'+f.split('.')[0]+'.mat'
    gt=sio.loadmat(os.path.join(self.gt_path,gt_file))['d_map']
    gt=gt.reshape(1, gt.shape[0], gt.shape[1])
    yield(img,gt)


    training:



    input_img= #representing input segment images to be fed to the network
    actual_dgt= #representing the actual dot-map ground-truth

    for i, (img, dgt) in enumerate(training_DS):
    input_img.append(img)
    actual_dgt.append(dgt)

    #initializing training parameters
    sgd=optimizers.SGD(lr=0.01, decay=0.0005, momentum=0.9)

    #compiling the network and defining the loss method
    net.CDECNN.compile(optimizer=sgd, loss='mean_squared_error')

    #training CDECNN network on training data
    training_log=net.CDECNN.fit(np.array(input_img), np.array(actual_dgt), batch_size=1, epochs=5)









    share|improve this question



























      0












      0








      0


      0






      i am a biginner in neural networks,
      i get the following error when running fit,



      ValueError: Error when checking target: expected conv2d_1 to have shape (64, 222, 222) but got array with shape (1, 224, 224)



      i use grayscale images, as far as i know i think i'm shaping the input correctly.
      i cant get what i'm doing wrong.



      here is a snippet of the network



      network model:



      def convLayer(channels):
      return

      Conv2D(channels,kernel_size=3,activation='relu',
      kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.01),
      data_format='channels_first')

      class est_net():

      def __init__(self, input=None):
      if input is None:
      input=Input(shape=(1,224,224))
      self.input=input

      conv1_1 = convLayer(64)(self.input)

      self.output = conv1_1
      self.CDECNN = Model(inputs=self.input, outputs=self.output)
      print(self.CDECNN.summary())


      reading data:



      def __iter__(self):
      files=self.img_files
      for f in files:
      if f==".DS_Store":
      continue
      img=cv2.imread(os.path.join(self.img_path,f),cv2.COLOR_BGR2GRAY)
      img=img.reshape(1, img.shape[0], img.shape[1])
      if img is None:
      print("unable to read image %s." % f)
      exit(0)
      gt_file='GT_'+f.split('.')[0]+'.mat'
      gt=sio.loadmat(os.path.join(self.gt_path,gt_file))['d_map']
      gt=gt.reshape(1, gt.shape[0], gt.shape[1])
      yield(img,gt)


      training:



      input_img= #representing input segment images to be fed to the network
      actual_dgt= #representing the actual dot-map ground-truth

      for i, (img, dgt) in enumerate(training_DS):
      input_img.append(img)
      actual_dgt.append(dgt)

      #initializing training parameters
      sgd=optimizers.SGD(lr=0.01, decay=0.0005, momentum=0.9)

      #compiling the network and defining the loss method
      net.CDECNN.compile(optimizer=sgd, loss='mean_squared_error')

      #training CDECNN network on training data
      training_log=net.CDECNN.fit(np.array(input_img), np.array(actual_dgt), batch_size=1, epochs=5)









      share|improve this question
















      i am a biginner in neural networks,
      i get the following error when running fit,



      ValueError: Error when checking target: expected conv2d_1 to have shape (64, 222, 222) but got array with shape (1, 224, 224)



      i use grayscale images, as far as i know i think i'm shaping the input correctly.
      i cant get what i'm doing wrong.



      here is a snippet of the network



      network model:



      def convLayer(channels):
      return

      Conv2D(channels,kernel_size=3,activation='relu',
      kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.01),
      data_format='channels_first')

      class est_net():

      def __init__(self, input=None):
      if input is None:
      input=Input(shape=(1,224,224))
      self.input=input

      conv1_1 = convLayer(64)(self.input)

      self.output = conv1_1
      self.CDECNN = Model(inputs=self.input, outputs=self.output)
      print(self.CDECNN.summary())


      reading data:



      def __iter__(self):
      files=self.img_files
      for f in files:
      if f==".DS_Store":
      continue
      img=cv2.imread(os.path.join(self.img_path,f),cv2.COLOR_BGR2GRAY)
      img=img.reshape(1, img.shape[0], img.shape[1])
      if img is None:
      print("unable to read image %s." % f)
      exit(0)
      gt_file='GT_'+f.split('.')[0]+'.mat'
      gt=sio.loadmat(os.path.join(self.gt_path,gt_file))['d_map']
      gt=gt.reshape(1, gt.shape[0], gt.shape[1])
      yield(img,gt)


      training:



      input_img= #representing input segment images to be fed to the network
      actual_dgt= #representing the actual dot-map ground-truth

      for i, (img, dgt) in enumerate(training_DS):
      input_img.append(img)
      actual_dgt.append(dgt)

      #initializing training parameters
      sgd=optimizers.SGD(lr=0.01, decay=0.0005, momentum=0.9)

      #compiling the network and defining the loss method
      net.CDECNN.compile(optimizer=sgd, loss='mean_squared_error')

      #training CDECNN network on training data
      training_log=net.CDECNN.fit(np.array(input_img), np.array(actual_dgt), batch_size=1, epochs=5)






      python keras conv-neural-network reshape shapes






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 20 '18 at 15:30







      norahik

















      asked Nov 20 '18 at 11:01









      norahiknorahik

      13




      13
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53391556%2ferror-in-data-shape-with-conv2d-layer-keras%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53391556%2ferror-in-data-shape-with-conv2d-layer-keras%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          How to fix TextFormField cause rebuild widget in Flutter