Limiting a sequence of moment generating functions
$begingroup$
I was trying to solve the following problem:
Let ${X_n}_{n=1}^{infty}$ be a sequence of independent random variables with the probability mass function $P{X_n = pm1 } = frac{1}{2}$, $n in mathbb{N}$. Let $Z_n=sum_{j=1}^{n}{X_j/2^j}$. Show that $Z_n xrightarrow{L} Z$, where $Z sim U[-1, 1]$.
(From An Introduction to Probability and Statistics V.K. Rohatgi & A. K. Md. Saleh, (c) 2015, Problems 7.5, Page 320)
$xrightarrow{L}$ means convergence in law (or in distribution), and $U[-1, 1]$ is the uniform distribution on the interval $[-1, 1]$.
My approach was the following:
We need to show that $limlimits_{nrightarrowinfty} M_{Z_n}(t) = M_{Z}(t) = frac{e^{1 times t} - e^{-1 times t}}{t times (1 - (-1))} = frac{e^t - e^{-t}}{2t}$.
$$M_{Z_n}(t) = E_{Z_n}left(e^{tZ_n}right) = Eleft(e^{tsum_{j = 1}^{n}{frac{X_j}{2^j}}}right) = Eleft(prod_{j=1}^{n}{e^{tfrac{X_j}{2^j}}} right) = prod_{j=1}^{n}{E_{X_j}left(e^{tfrac{X_j}{2^j}} right)}$$
$$ E_{X_j}left( e^{t frac{X_j}{2^j}} right) = e^{t times frac{-1}{2^j}} times frac{1}{2} + e^{t times frac{1}{2^j}} times frac{1}{2} = frac{1}{2} left( e^{frac{t}{2^j}} + e^{frac{-t}{2^j}} right) $$
Hence,
$$
M_{Z_n}(t) = prod_{j = 1}^{n}{frac{1}{2} left( e^{frac{t}{2^j}} + e^{frac{-t}{2^j}} right)}
$$
I cannot see how this sequence of functions converges to the required moment generating function of $U[-1,1]$.
I had many attempts, for instance using the power series representation of $e^x$ and limiting approximations, but failed in them all. After that I started thinking that perhaps I'm missing knowledge of some theorem.
Any idea how to proceed?
probability-theory real-analysis analysis probability-distributions
$endgroup$
migrated from mathoverflow.net Jan 5 at 15:15
This question came from our site for professional mathematicians.
add a comment |
$begingroup$
I was trying to solve the following problem:
Let ${X_n}_{n=1}^{infty}$ be a sequence of independent random variables with the probability mass function $P{X_n = pm1 } = frac{1}{2}$, $n in mathbb{N}$. Let $Z_n=sum_{j=1}^{n}{X_j/2^j}$. Show that $Z_n xrightarrow{L} Z$, where $Z sim U[-1, 1]$.
(From An Introduction to Probability and Statistics V.K. Rohatgi & A. K. Md. Saleh, (c) 2015, Problems 7.5, Page 320)
$xrightarrow{L}$ means convergence in law (or in distribution), and $U[-1, 1]$ is the uniform distribution on the interval $[-1, 1]$.
My approach was the following:
We need to show that $limlimits_{nrightarrowinfty} M_{Z_n}(t) = M_{Z}(t) = frac{e^{1 times t} - e^{-1 times t}}{t times (1 - (-1))} = frac{e^t - e^{-t}}{2t}$.
$$M_{Z_n}(t) = E_{Z_n}left(e^{tZ_n}right) = Eleft(e^{tsum_{j = 1}^{n}{frac{X_j}{2^j}}}right) = Eleft(prod_{j=1}^{n}{e^{tfrac{X_j}{2^j}}} right) = prod_{j=1}^{n}{E_{X_j}left(e^{tfrac{X_j}{2^j}} right)}$$
$$ E_{X_j}left( e^{t frac{X_j}{2^j}} right) = e^{t times frac{-1}{2^j}} times frac{1}{2} + e^{t times frac{1}{2^j}} times frac{1}{2} = frac{1}{2} left( e^{frac{t}{2^j}} + e^{frac{-t}{2^j}} right) $$
Hence,
$$
M_{Z_n}(t) = prod_{j = 1}^{n}{frac{1}{2} left( e^{frac{t}{2^j}} + e^{frac{-t}{2^j}} right)}
$$
I cannot see how this sequence of functions converges to the required moment generating function of $U[-1,1]$.
I had many attempts, for instance using the power series representation of $e^x$ and limiting approximations, but failed in them all. After that I started thinking that perhaps I'm missing knowledge of some theorem.
Any idea how to proceed?
probability-theory real-analysis analysis probability-distributions
$endgroup$
migrated from mathoverflow.net Jan 5 at 15:15
This question came from our site for professional mathematicians.
add a comment |
$begingroup$
I was trying to solve the following problem:
Let ${X_n}_{n=1}^{infty}$ be a sequence of independent random variables with the probability mass function $P{X_n = pm1 } = frac{1}{2}$, $n in mathbb{N}$. Let $Z_n=sum_{j=1}^{n}{X_j/2^j}$. Show that $Z_n xrightarrow{L} Z$, where $Z sim U[-1, 1]$.
(From An Introduction to Probability and Statistics V.K. Rohatgi & A. K. Md. Saleh, (c) 2015, Problems 7.5, Page 320)
$xrightarrow{L}$ means convergence in law (or in distribution), and $U[-1, 1]$ is the uniform distribution on the interval $[-1, 1]$.
My approach was the following:
We need to show that $limlimits_{nrightarrowinfty} M_{Z_n}(t) = M_{Z}(t) = frac{e^{1 times t} - e^{-1 times t}}{t times (1 - (-1))} = frac{e^t - e^{-t}}{2t}$.
$$M_{Z_n}(t) = E_{Z_n}left(e^{tZ_n}right) = Eleft(e^{tsum_{j = 1}^{n}{frac{X_j}{2^j}}}right) = Eleft(prod_{j=1}^{n}{e^{tfrac{X_j}{2^j}}} right) = prod_{j=1}^{n}{E_{X_j}left(e^{tfrac{X_j}{2^j}} right)}$$
$$ E_{X_j}left( e^{t frac{X_j}{2^j}} right) = e^{t times frac{-1}{2^j}} times frac{1}{2} + e^{t times frac{1}{2^j}} times frac{1}{2} = frac{1}{2} left( e^{frac{t}{2^j}} + e^{frac{-t}{2^j}} right) $$
Hence,
$$
M_{Z_n}(t) = prod_{j = 1}^{n}{frac{1}{2} left( e^{frac{t}{2^j}} + e^{frac{-t}{2^j}} right)}
$$
I cannot see how this sequence of functions converges to the required moment generating function of $U[-1,1]$.
I had many attempts, for instance using the power series representation of $e^x$ and limiting approximations, but failed in them all. After that I started thinking that perhaps I'm missing knowledge of some theorem.
Any idea how to proceed?
probability-theory real-analysis analysis probability-distributions
$endgroup$
I was trying to solve the following problem:
Let ${X_n}_{n=1}^{infty}$ be a sequence of independent random variables with the probability mass function $P{X_n = pm1 } = frac{1}{2}$, $n in mathbb{N}$. Let $Z_n=sum_{j=1}^{n}{X_j/2^j}$. Show that $Z_n xrightarrow{L} Z$, where $Z sim U[-1, 1]$.
(From An Introduction to Probability and Statistics V.K. Rohatgi & A. K. Md. Saleh, (c) 2015, Problems 7.5, Page 320)
$xrightarrow{L}$ means convergence in law (or in distribution), and $U[-1, 1]$ is the uniform distribution on the interval $[-1, 1]$.
My approach was the following:
We need to show that $limlimits_{nrightarrowinfty} M_{Z_n}(t) = M_{Z}(t) = frac{e^{1 times t} - e^{-1 times t}}{t times (1 - (-1))} = frac{e^t - e^{-t}}{2t}$.
$$M_{Z_n}(t) = E_{Z_n}left(e^{tZ_n}right) = Eleft(e^{tsum_{j = 1}^{n}{frac{X_j}{2^j}}}right) = Eleft(prod_{j=1}^{n}{e^{tfrac{X_j}{2^j}}} right) = prod_{j=1}^{n}{E_{X_j}left(e^{tfrac{X_j}{2^j}} right)}$$
$$ E_{X_j}left( e^{t frac{X_j}{2^j}} right) = e^{t times frac{-1}{2^j}} times frac{1}{2} + e^{t times frac{1}{2^j}} times frac{1}{2} = frac{1}{2} left( e^{frac{t}{2^j}} + e^{frac{-t}{2^j}} right) $$
Hence,
$$
M_{Z_n}(t) = prod_{j = 1}^{n}{frac{1}{2} left( e^{frac{t}{2^j}} + e^{frac{-t}{2^j}} right)}
$$
I cannot see how this sequence of functions converges to the required moment generating function of $U[-1,1]$.
I had many attempts, for instance using the power series representation of $e^x$ and limiting approximations, but failed in them all. After that I started thinking that perhaps I'm missing knowledge of some theorem.
Any idea how to proceed?
probability-theory real-analysis analysis probability-distributions
probability-theory real-analysis analysis probability-distributions
asked Dec 24 '18 at 14:39
Noor AlYaqeenNoor AlYaqeen
346
346
migrated from mathoverflow.net Jan 5 at 15:15
This question came from our site for professional mathematicians.
migrated from mathoverflow.net Jan 5 at 15:15
This question came from our site for professional mathematicians.
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062816%2flimiting-a-sequence-of-moment-generating-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062816%2flimiting-a-sequence-of-moment-generating-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown