Evaluate the limit of $prod_{k=2}^n(1-frac2{k(k+1)})^2$












0












$begingroup$


Evaluate $lim_{n to infty} x_{n}$, where $x_{n} = (1-(1/3))^{2}(1-(1/6))^{2}(1-(1/10))^{2} dots (1-(2/(n(n+1)))^{2}, n≥2$



I couldn't find any pattern of terms to find the limit.
I applied $log$ both sides to get -
$log x_{n} = lim_{n to infty} 2sum_{k=1}^{n} log (1-(2/(k(k+1))$



Then I am stuck.



I also tried this -



$x_{n} = [(2/3)(5/6)(9/10) dots (frac{n(n+1)-2}{n(n+1)})]^{2}$
But, I am finding nothing.



How to solve this problem?










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Note that $$n(n+1)-2=(n-1)(n+2)$$ hence $$left(1-frac2{n(n+1)}right)^2=frac{(n-1)^2(n+2)^2}{n^2(n+1)^2}$$ In view of the above, I am surprised that you "couldn't find any pattern" in the partial products... Maybe a new look at these could help?
    $endgroup$
    – Did
    Jan 2 at 12:56










  • $begingroup$
    In an old notebook i have found this here $$frac{1}{9}left(frac{n+2}{n}right)^2$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 2 at 13:03












  • $begingroup$
    we have proved it via induction.
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 2 at 13:04






  • 1




    $begingroup$
    Who needs "old notebooks" here when the cancellations are so visible?
    $endgroup$
    – Did
    Jan 2 at 13:10










  • $begingroup$
    @Did I got the pattern $x_{n} = (frac{1(4)}{2(3)} frac{2(5)}{3(4)} frac{3(6)}{4(5)} dots )^{2}$ by applying limit $n to infty$, I got $1/9$
    $endgroup$
    – Mathsaddict
    Jan 2 at 13:21


















0












$begingroup$


Evaluate $lim_{n to infty} x_{n}$, where $x_{n} = (1-(1/3))^{2}(1-(1/6))^{2}(1-(1/10))^{2} dots (1-(2/(n(n+1)))^{2}, n≥2$



I couldn't find any pattern of terms to find the limit.
I applied $log$ both sides to get -
$log x_{n} = lim_{n to infty} 2sum_{k=1}^{n} log (1-(2/(k(k+1))$



Then I am stuck.



I also tried this -



$x_{n} = [(2/3)(5/6)(9/10) dots (frac{n(n+1)-2}{n(n+1)})]^{2}$
But, I am finding nothing.



How to solve this problem?










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    Note that $$n(n+1)-2=(n-1)(n+2)$$ hence $$left(1-frac2{n(n+1)}right)^2=frac{(n-1)^2(n+2)^2}{n^2(n+1)^2}$$ In view of the above, I am surprised that you "couldn't find any pattern" in the partial products... Maybe a new look at these could help?
    $endgroup$
    – Did
    Jan 2 at 12:56










  • $begingroup$
    In an old notebook i have found this here $$frac{1}{9}left(frac{n+2}{n}right)^2$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 2 at 13:03












  • $begingroup$
    we have proved it via induction.
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 2 at 13:04






  • 1




    $begingroup$
    Who needs "old notebooks" here when the cancellations are so visible?
    $endgroup$
    – Did
    Jan 2 at 13:10










  • $begingroup$
    @Did I got the pattern $x_{n} = (frac{1(4)}{2(3)} frac{2(5)}{3(4)} frac{3(6)}{4(5)} dots )^{2}$ by applying limit $n to infty$, I got $1/9$
    $endgroup$
    – Mathsaddict
    Jan 2 at 13:21
















0












0








0





$begingroup$


Evaluate $lim_{n to infty} x_{n}$, where $x_{n} = (1-(1/3))^{2}(1-(1/6))^{2}(1-(1/10))^{2} dots (1-(2/(n(n+1)))^{2}, n≥2$



I couldn't find any pattern of terms to find the limit.
I applied $log$ both sides to get -
$log x_{n} = lim_{n to infty} 2sum_{k=1}^{n} log (1-(2/(k(k+1))$



Then I am stuck.



I also tried this -



$x_{n} = [(2/3)(5/6)(9/10) dots (frac{n(n+1)-2}{n(n+1)})]^{2}$
But, I am finding nothing.



How to solve this problem?










share|cite|improve this question











$endgroup$




Evaluate $lim_{n to infty} x_{n}$, where $x_{n} = (1-(1/3))^{2}(1-(1/6))^{2}(1-(1/10))^{2} dots (1-(2/(n(n+1)))^{2}, n≥2$



I couldn't find any pattern of terms to find the limit.
I applied $log$ both sides to get -
$log x_{n} = lim_{n to infty} 2sum_{k=1}^{n} log (1-(2/(k(k+1))$



Then I am stuck.



I also tried this -



$x_{n} = [(2/3)(5/6)(9/10) dots (frac{n(n+1)-2}{n(n+1)})]^{2}$
But, I am finding nothing.



How to solve this problem?







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 13:14









Henning Makholm

239k17303540




239k17303540










asked Jan 2 at 12:50









MathsaddictMathsaddict

3008




3008








  • 4




    $begingroup$
    Note that $$n(n+1)-2=(n-1)(n+2)$$ hence $$left(1-frac2{n(n+1)}right)^2=frac{(n-1)^2(n+2)^2}{n^2(n+1)^2}$$ In view of the above, I am surprised that you "couldn't find any pattern" in the partial products... Maybe a new look at these could help?
    $endgroup$
    – Did
    Jan 2 at 12:56










  • $begingroup$
    In an old notebook i have found this here $$frac{1}{9}left(frac{n+2}{n}right)^2$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 2 at 13:03












  • $begingroup$
    we have proved it via induction.
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 2 at 13:04






  • 1




    $begingroup$
    Who needs "old notebooks" here when the cancellations are so visible?
    $endgroup$
    – Did
    Jan 2 at 13:10










  • $begingroup$
    @Did I got the pattern $x_{n} = (frac{1(4)}{2(3)} frac{2(5)}{3(4)} frac{3(6)}{4(5)} dots )^{2}$ by applying limit $n to infty$, I got $1/9$
    $endgroup$
    – Mathsaddict
    Jan 2 at 13:21
















  • 4




    $begingroup$
    Note that $$n(n+1)-2=(n-1)(n+2)$$ hence $$left(1-frac2{n(n+1)}right)^2=frac{(n-1)^2(n+2)^2}{n^2(n+1)^2}$$ In view of the above, I am surprised that you "couldn't find any pattern" in the partial products... Maybe a new look at these could help?
    $endgroup$
    – Did
    Jan 2 at 12:56










  • $begingroup$
    In an old notebook i have found this here $$frac{1}{9}left(frac{n+2}{n}right)^2$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 2 at 13:03












  • $begingroup$
    we have proved it via induction.
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 2 at 13:04






  • 1




    $begingroup$
    Who needs "old notebooks" here when the cancellations are so visible?
    $endgroup$
    – Did
    Jan 2 at 13:10










  • $begingroup$
    @Did I got the pattern $x_{n} = (frac{1(4)}{2(3)} frac{2(5)}{3(4)} frac{3(6)}{4(5)} dots )^{2}$ by applying limit $n to infty$, I got $1/9$
    $endgroup$
    – Mathsaddict
    Jan 2 at 13:21










4




4




$begingroup$
Note that $$n(n+1)-2=(n-1)(n+2)$$ hence $$left(1-frac2{n(n+1)}right)^2=frac{(n-1)^2(n+2)^2}{n^2(n+1)^2}$$ In view of the above, I am surprised that you "couldn't find any pattern" in the partial products... Maybe a new look at these could help?
$endgroup$
– Did
Jan 2 at 12:56




$begingroup$
Note that $$n(n+1)-2=(n-1)(n+2)$$ hence $$left(1-frac2{n(n+1)}right)^2=frac{(n-1)^2(n+2)^2}{n^2(n+1)^2}$$ In view of the above, I am surprised that you "couldn't find any pattern" in the partial products... Maybe a new look at these could help?
$endgroup$
– Did
Jan 2 at 12:56












$begingroup$
In an old notebook i have found this here $$frac{1}{9}left(frac{n+2}{n}right)^2$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 2 at 13:03






$begingroup$
In an old notebook i have found this here $$frac{1}{9}left(frac{n+2}{n}right)^2$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 2 at 13:03














$begingroup$
we have proved it via induction.
$endgroup$
– Dr. Sonnhard Graubner
Jan 2 at 13:04




$begingroup$
we have proved it via induction.
$endgroup$
– Dr. Sonnhard Graubner
Jan 2 at 13:04




1




1




$begingroup$
Who needs "old notebooks" here when the cancellations are so visible?
$endgroup$
– Did
Jan 2 at 13:10




$begingroup$
Who needs "old notebooks" here when the cancellations are so visible?
$endgroup$
– Did
Jan 2 at 13:10












$begingroup$
@Did I got the pattern $x_{n} = (frac{1(4)}{2(3)} frac{2(5)}{3(4)} frac{3(6)}{4(5)} dots )^{2}$ by applying limit $n to infty$, I got $1/9$
$endgroup$
– Mathsaddict
Jan 2 at 13:21






$begingroup$
@Did I got the pattern $x_{n} = (frac{1(4)}{2(3)} frac{2(5)}{3(4)} frac{3(6)}{4(5)} dots )^{2}$ by applying limit $n to infty$, I got $1/9$
$endgroup$
– Mathsaddict
Jan 2 at 13:21












1 Answer
1






active

oldest

votes


















0












$begingroup$

$$prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2{=prod_{k=2}^nleft({k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{(k-1)(k+2)over k(k+1)}right)^2\=left(prod_{k=2}^n{k-1over k}right)^2left(prod_{k=2}^n{k+2over k+1}right)^2\=left({1over n}right)^2left({n+2over 3}right)^2\={n^2+4n+4over 9n^2}}$$therefore $$lim_{nto infty}prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2={1over 9}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059440%2fevaluate-the-limit-of-prod-k-2n1-frac2kk12%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $$prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2{=prod_{k=2}^nleft({k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{(k-1)(k+2)over k(k+1)}right)^2\=left(prod_{k=2}^n{k-1over k}right)^2left(prod_{k=2}^n{k+2over k+1}right)^2\=left({1over n}right)^2left({n+2over 3}right)^2\={n^2+4n+4over 9n^2}}$$therefore $$lim_{nto infty}prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2={1over 9}$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $$prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2{=prod_{k=2}^nleft({k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{(k-1)(k+2)over k(k+1)}right)^2\=left(prod_{k=2}^n{k-1over k}right)^2left(prod_{k=2}^n{k+2over k+1}right)^2\=left({1over n}right)^2left({n+2over 3}right)^2\={n^2+4n+4over 9n^2}}$$therefore $$lim_{nto infty}prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2={1over 9}$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $$prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2{=prod_{k=2}^nleft({k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{(k-1)(k+2)over k(k+1)}right)^2\=left(prod_{k=2}^n{k-1over k}right)^2left(prod_{k=2}^n{k+2over k+1}right)^2\=left({1over n}right)^2left({n+2over 3}right)^2\={n^2+4n+4over 9n^2}}$$therefore $$lim_{nto infty}prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2={1over 9}$$






        share|cite|improve this answer









        $endgroup$



        $$prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2{=prod_{k=2}^nleft({k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{k(k+1)-2over k(k+1)}right)^2\=left(prod_{k=2}^n{(k-1)(k+2)over k(k+1)}right)^2\=left(prod_{k=2}^n{k-1over k}right)^2left(prod_{k=2}^n{k+2over k+1}right)^2\=left({1over n}right)^2left({n+2over 3}right)^2\={n^2+4n+4over 9n^2}}$$therefore $$lim_{nto infty}prod_{k=2}^nleft(1-frac2{k(k+1)}right)^2={1over 9}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 5 at 7:10









        Mostafa AyazMostafa Ayaz

        15.2k3939




        15.2k3939






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059440%2fevaluate-the-limit-of-prod-k-2n1-frac2kk12%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            Npm cannot find a required file even through it is in the searched directory

            How to fix TextFormField cause rebuild widget in Flutter