The limit of an integral involving Fourier expansion
$begingroup$
$F_n(t)=frac{1}{2npi}$ $(frac{sin frac{nt}{2}}{sin frac{t}{2}})^2$
Proof
$int_{deltale |t|le pi} F_n(t) dtrightarrow 0 ,nrightarrow +infty$
My attempt
$frac{1}{2}+cos t+cos 2t+dots +cos nt=frac{sin frac{(2n+1)t}{2}}{2sinfrac{t}{2}}$——(1)
And
$$sum_{m=0}^{n-1}sin (m+frac{1}{2})t=frac{sin ^2frac{nt}{2}}{sin frac{t}{2}}$$
So $int_{deltale |t|le pi} F_n(t) dt= frac{1}{2npi} int_{deltale |t|le pi} frac{sum_{m=0}^{n-1}sin (m+frac{1}{2})t}{sinfrac{t}{2}}dt$
And use the (1)the integral can be change to some integral of cos blabla but i don’t know what should I do next
real-analysis calculus integration limits analysis
$endgroup$
add a comment |
$begingroup$
$F_n(t)=frac{1}{2npi}$ $(frac{sin frac{nt}{2}}{sin frac{t}{2}})^2$
Proof
$int_{deltale |t|le pi} F_n(t) dtrightarrow 0 ,nrightarrow +infty$
My attempt
$frac{1}{2}+cos t+cos 2t+dots +cos nt=frac{sin frac{(2n+1)t}{2}}{2sinfrac{t}{2}}$——(1)
And
$$sum_{m=0}^{n-1}sin (m+frac{1}{2})t=frac{sin ^2frac{nt}{2}}{sin frac{t}{2}}$$
So $int_{deltale |t|le pi} F_n(t) dt= frac{1}{2npi} int_{deltale |t|le pi} frac{sum_{m=0}^{n-1}sin (m+frac{1}{2})t}{sinfrac{t}{2}}dt$
And use the (1)the integral can be change to some integral of cos blabla but i don’t know what should I do next
real-analysis calculus integration limits analysis
$endgroup$
add a comment |
$begingroup$
$F_n(t)=frac{1}{2npi}$ $(frac{sin frac{nt}{2}}{sin frac{t}{2}})^2$
Proof
$int_{deltale |t|le pi} F_n(t) dtrightarrow 0 ,nrightarrow +infty$
My attempt
$frac{1}{2}+cos t+cos 2t+dots +cos nt=frac{sin frac{(2n+1)t}{2}}{2sinfrac{t}{2}}$——(1)
And
$$sum_{m=0}^{n-1}sin (m+frac{1}{2})t=frac{sin ^2frac{nt}{2}}{sin frac{t}{2}}$$
So $int_{deltale |t|le pi} F_n(t) dt= frac{1}{2npi} int_{deltale |t|le pi} frac{sum_{m=0}^{n-1}sin (m+frac{1}{2})t}{sinfrac{t}{2}}dt$
And use the (1)the integral can be change to some integral of cos blabla but i don’t know what should I do next
real-analysis calculus integration limits analysis
$endgroup$
$F_n(t)=frac{1}{2npi}$ $(frac{sin frac{nt}{2}}{sin frac{t}{2}})^2$
Proof
$int_{deltale |t|le pi} F_n(t) dtrightarrow 0 ,nrightarrow +infty$
My attempt
$frac{1}{2}+cos t+cos 2t+dots +cos nt=frac{sin frac{(2n+1)t}{2}}{2sinfrac{t}{2}}$——(1)
And
$$sum_{m=0}^{n-1}sin (m+frac{1}{2})t=frac{sin ^2frac{nt}{2}}{sin frac{t}{2}}$$
So $int_{deltale |t|le pi} F_n(t) dt= frac{1}{2npi} int_{deltale |t|le pi} frac{sum_{m=0}^{n-1}sin (m+frac{1}{2})t}{sinfrac{t}{2}}dt$
And use the (1)the integral can be change to some integral of cos blabla but i don’t know what should I do next
real-analysis calculus integration limits analysis
real-analysis calculus integration limits analysis
edited Jan 2 at 16:35
Berkheimer
1,437924
1,437924
asked Jan 2 at 15:59
jacksonjackson
819
819
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can use the raw form of $F_n(t)$. It's quite a simple estimate. We have
$$
frac{1}{2npi}frac{ sin^2 frac{nt}{2}}{sin^2 frac{t}{2}}le frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}},
$$ for $deltale|t|le pi$ and
$$
int_{deltale |t|le pi} F_n(t) dtle int_{deltale |t|le pi} frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}} dtle frac{1}{n}frac{1}{sin^2 frac{delta}{2}}to 0
$$ as $nto infty$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059646%2fthe-limit-of-an-integral-involving-fourier-expansion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can use the raw form of $F_n(t)$. It's quite a simple estimate. We have
$$
frac{1}{2npi}frac{ sin^2 frac{nt}{2}}{sin^2 frac{t}{2}}le frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}},
$$ for $deltale|t|le pi$ and
$$
int_{deltale |t|le pi} F_n(t) dtle int_{deltale |t|le pi} frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}} dtle frac{1}{n}frac{1}{sin^2 frac{delta}{2}}to 0
$$ as $nto infty$.
$endgroup$
add a comment |
$begingroup$
You can use the raw form of $F_n(t)$. It's quite a simple estimate. We have
$$
frac{1}{2npi}frac{ sin^2 frac{nt}{2}}{sin^2 frac{t}{2}}le frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}},
$$ for $deltale|t|le pi$ and
$$
int_{deltale |t|le pi} F_n(t) dtle int_{deltale |t|le pi} frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}} dtle frac{1}{n}frac{1}{sin^2 frac{delta}{2}}to 0
$$ as $nto infty$.
$endgroup$
add a comment |
$begingroup$
You can use the raw form of $F_n(t)$. It's quite a simple estimate. We have
$$
frac{1}{2npi}frac{ sin^2 frac{nt}{2}}{sin^2 frac{t}{2}}le frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}},
$$ for $deltale|t|le pi$ and
$$
int_{deltale |t|le pi} F_n(t) dtle int_{deltale |t|le pi} frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}} dtle frac{1}{n}frac{1}{sin^2 frac{delta}{2}}to 0
$$ as $nto infty$.
$endgroup$
You can use the raw form of $F_n(t)$. It's quite a simple estimate. We have
$$
frac{1}{2npi}frac{ sin^2 frac{nt}{2}}{sin^2 frac{t}{2}}le frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}},
$$ for $deltale|t|le pi$ and
$$
int_{deltale |t|le pi} F_n(t) dtle int_{deltale |t|le pi} frac{1}{2npi}frac{1}{sin^2 frac{delta}{2}} dtle frac{1}{n}frac{1}{sin^2 frac{delta}{2}}to 0
$$ as $nto infty$.
answered Jan 2 at 17:10
SongSong
7,851423
7,851423
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059646%2fthe-limit-of-an-integral-involving-fourier-expansion%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown