Finding $B^*$, the dual basis
$begingroup$
Find a basis $B$ for
$$V = left{ left[
begin{array}{cc}
x\
y\
z
end{array}
right] in mathbb{R}^3 vert x+y+z = 0right}$$ and then find $B^*$, the dual basis for $B$.
The way we learned it was that given a basis, we build a matrix A whose columns is the vectors, find $A^{-1}$, and those build linear functionals that are the rows of the inverse matrix.
For example, if $V=mathbb{R}^2$ and $ B = $$left{ left[
begin{array}{cc}
3\
4
end{array}
right], left[
begin{array}{c}
5\
7
end{array}
right]right} $, then $ A = $$ left[
begin{array}{cc}
3&5\
4&7
end{array}
right]$, then $A^{-1} = $$ left[
begin{array}{cc}
7&-5\
-4&3
end{array}
right]$, and the dual basis $B^* = (l_1, l_2)$ when :
$ l_1= left( left[
begin{array}{cc}
x\
y\
end{array}
right]right) = 7x_1 - 5x_2 $
$ l_2= left(left[
begin{array}{cc}
x\
y\
end{array}
right]right) = -4x_1 + 3x_2 $
However, when finding a basis for $V$, I get to the following solution vector
$$left[begin{array}{cc}
-y-z\
y\
z
end{array}
right] = y left[begin{array}{cc}
-1\
1\
0
end{array}
right] + z left[begin{array}{cc}
-1\
0\
1
end{array}
right]$$
If I build a matrix out of the basis$ left{ left[begin{array}{cc}
-1\
1\
0
end{array}
right] , left[begin{array}{cc}
-1\
0\
1
end{array}
right] right}$ I will have a matrix that is $3times2$ and I cannot inverse this.
How to proceed from here?
linear-algebra dual-spaces
$endgroup$
add a comment |
$begingroup$
Find a basis $B$ for
$$V = left{ left[
begin{array}{cc}
x\
y\
z
end{array}
right] in mathbb{R}^3 vert x+y+z = 0right}$$ and then find $B^*$, the dual basis for $B$.
The way we learned it was that given a basis, we build a matrix A whose columns is the vectors, find $A^{-1}$, and those build linear functionals that are the rows of the inverse matrix.
For example, if $V=mathbb{R}^2$ and $ B = $$left{ left[
begin{array}{cc}
3\
4
end{array}
right], left[
begin{array}{c}
5\
7
end{array}
right]right} $, then $ A = $$ left[
begin{array}{cc}
3&5\
4&7
end{array}
right]$, then $A^{-1} = $$ left[
begin{array}{cc}
7&-5\
-4&3
end{array}
right]$, and the dual basis $B^* = (l_1, l_2)$ when :
$ l_1= left( left[
begin{array}{cc}
x\
y\
end{array}
right]right) = 7x_1 - 5x_2 $
$ l_2= left(left[
begin{array}{cc}
x\
y\
end{array}
right]right) = -4x_1 + 3x_2 $
However, when finding a basis for $V$, I get to the following solution vector
$$left[begin{array}{cc}
-y-z\
y\
z
end{array}
right] = y left[begin{array}{cc}
-1\
1\
0
end{array}
right] + z left[begin{array}{cc}
-1\
0\
1
end{array}
right]$$
If I build a matrix out of the basis$ left{ left[begin{array}{cc}
-1\
1\
0
end{array}
right] , left[begin{array}{cc}
-1\
0\
1
end{array}
right] right}$ I will have a matrix that is $3times2$ and I cannot inverse this.
How to proceed from here?
linear-algebra dual-spaces
$endgroup$
1
$begingroup$
You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
$endgroup$
– bounceback
Jan 2 at 18:52
$begingroup$
@bounceback explained very well, thanks!
$endgroup$
– Tegernako
Jan 2 at 19:44
add a comment |
$begingroup$
Find a basis $B$ for
$$V = left{ left[
begin{array}{cc}
x\
y\
z
end{array}
right] in mathbb{R}^3 vert x+y+z = 0right}$$ and then find $B^*$, the dual basis for $B$.
The way we learned it was that given a basis, we build a matrix A whose columns is the vectors, find $A^{-1}$, and those build linear functionals that are the rows of the inverse matrix.
For example, if $V=mathbb{R}^2$ and $ B = $$left{ left[
begin{array}{cc}
3\
4
end{array}
right], left[
begin{array}{c}
5\
7
end{array}
right]right} $, then $ A = $$ left[
begin{array}{cc}
3&5\
4&7
end{array}
right]$, then $A^{-1} = $$ left[
begin{array}{cc}
7&-5\
-4&3
end{array}
right]$, and the dual basis $B^* = (l_1, l_2)$ when :
$ l_1= left( left[
begin{array}{cc}
x\
y\
end{array}
right]right) = 7x_1 - 5x_2 $
$ l_2= left(left[
begin{array}{cc}
x\
y\
end{array}
right]right) = -4x_1 + 3x_2 $
However, when finding a basis for $V$, I get to the following solution vector
$$left[begin{array}{cc}
-y-z\
y\
z
end{array}
right] = y left[begin{array}{cc}
-1\
1\
0
end{array}
right] + z left[begin{array}{cc}
-1\
0\
1
end{array}
right]$$
If I build a matrix out of the basis$ left{ left[begin{array}{cc}
-1\
1\
0
end{array}
right] , left[begin{array}{cc}
-1\
0\
1
end{array}
right] right}$ I will have a matrix that is $3times2$ and I cannot inverse this.
How to proceed from here?
linear-algebra dual-spaces
$endgroup$
Find a basis $B$ for
$$V = left{ left[
begin{array}{cc}
x\
y\
z
end{array}
right] in mathbb{R}^3 vert x+y+z = 0right}$$ and then find $B^*$, the dual basis for $B$.
The way we learned it was that given a basis, we build a matrix A whose columns is the vectors, find $A^{-1}$, and those build linear functionals that are the rows of the inverse matrix.
For example, if $V=mathbb{R}^2$ and $ B = $$left{ left[
begin{array}{cc}
3\
4
end{array}
right], left[
begin{array}{c}
5\
7
end{array}
right]right} $, then $ A = $$ left[
begin{array}{cc}
3&5\
4&7
end{array}
right]$, then $A^{-1} = $$ left[
begin{array}{cc}
7&-5\
-4&3
end{array}
right]$, and the dual basis $B^* = (l_1, l_2)$ when :
$ l_1= left( left[
begin{array}{cc}
x\
y\
end{array}
right]right) = 7x_1 - 5x_2 $
$ l_2= left(left[
begin{array}{cc}
x\
y\
end{array}
right]right) = -4x_1 + 3x_2 $
However, when finding a basis for $V$, I get to the following solution vector
$$left[begin{array}{cc}
-y-z\
y\
z
end{array}
right] = y left[begin{array}{cc}
-1\
1\
0
end{array}
right] + z left[begin{array}{cc}
-1\
0\
1
end{array}
right]$$
If I build a matrix out of the basis$ left{ left[begin{array}{cc}
-1\
1\
0
end{array}
right] , left[begin{array}{cc}
-1\
0\
1
end{array}
right] right}$ I will have a matrix that is $3times2$ and I cannot inverse this.
How to proceed from here?
linear-algebra dual-spaces
linear-algebra dual-spaces
edited Jan 2 at 19:02
mechanodroid
27.1k62446
27.1k62446
asked Jan 2 at 18:42
TegernakoTegernako
897
897
1
$begingroup$
You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
$endgroup$
– bounceback
Jan 2 at 18:52
$begingroup$
@bounceback explained very well, thanks!
$endgroup$
– Tegernako
Jan 2 at 19:44
add a comment |
1
$begingroup$
You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
$endgroup$
– bounceback
Jan 2 at 18:52
$begingroup$
@bounceback explained very well, thanks!
$endgroup$
– Tegernako
Jan 2 at 19:44
1
1
$begingroup$
You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
$endgroup$
– bounceback
Jan 2 at 18:52
$begingroup$
You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
$endgroup$
– bounceback
Jan 2 at 18:52
$begingroup$
@bounceback explained very well, thanks!
$endgroup$
– Tegernako
Jan 2 at 19:44
$begingroup$
@bounceback explained very well, thanks!
$endgroup$
– Tegernako
Jan 2 at 19:44
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$
Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
$$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$
$endgroup$
add a comment |
$begingroup$
Be
begin{equation}
V = leftlbrace
left[begin{array}{c}
x \
y \
z \
end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
end{equation}
Then $z=-x-y$, thus basis $B$ is:
begin{equation}
B = leftlbrace
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
,
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right] rightrbrace
end{equation}
Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
begin{equation}
delta_{ij}=begin{cases}
1 quadtextrm{ if } i=j \
0 quadtextrm{ if } ineq j \
end{cases}
end{equation}
Then for $f_1$:
begin{eqnarray}
f_1left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_1left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_1left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
x
end{eqnarray}
And $f_2$:
begin{eqnarray}
f_2left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_2left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_2left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
y
end{eqnarray}
Then $B^{*}={f_1,f_2}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059814%2ffinding-b-the-dual-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$
Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
$$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$
$endgroup$
add a comment |
$begingroup$
By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$
Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
$$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$
$endgroup$
add a comment |
$begingroup$
By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$
Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
$$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$
$endgroup$
By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$
Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
$$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$
answered Jan 2 at 18:59
mechanodroidmechanodroid
27.1k62446
27.1k62446
add a comment |
add a comment |
$begingroup$
Be
begin{equation}
V = leftlbrace
left[begin{array}{c}
x \
y \
z \
end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
end{equation}
Then $z=-x-y$, thus basis $B$ is:
begin{equation}
B = leftlbrace
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
,
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right] rightrbrace
end{equation}
Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
begin{equation}
delta_{ij}=begin{cases}
1 quadtextrm{ if } i=j \
0 quadtextrm{ if } ineq j \
end{cases}
end{equation}
Then for $f_1$:
begin{eqnarray}
f_1left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_1left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_1left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
x
end{eqnarray}
And $f_2$:
begin{eqnarray}
f_2left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_2left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_2left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
y
end{eqnarray}
Then $B^{*}={f_1,f_2}$
$endgroup$
add a comment |
$begingroup$
Be
begin{equation}
V = leftlbrace
left[begin{array}{c}
x \
y \
z \
end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
end{equation}
Then $z=-x-y$, thus basis $B$ is:
begin{equation}
B = leftlbrace
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
,
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right] rightrbrace
end{equation}
Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
begin{equation}
delta_{ij}=begin{cases}
1 quadtextrm{ if } i=j \
0 quadtextrm{ if } ineq j \
end{cases}
end{equation}
Then for $f_1$:
begin{eqnarray}
f_1left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_1left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_1left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
x
end{eqnarray}
And $f_2$:
begin{eqnarray}
f_2left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_2left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_2left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
y
end{eqnarray}
Then $B^{*}={f_1,f_2}$
$endgroup$
add a comment |
$begingroup$
Be
begin{equation}
V = leftlbrace
left[begin{array}{c}
x \
y \
z \
end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
end{equation}
Then $z=-x-y$, thus basis $B$ is:
begin{equation}
B = leftlbrace
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
,
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right] rightrbrace
end{equation}
Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
begin{equation}
delta_{ij}=begin{cases}
1 quadtextrm{ if } i=j \
0 quadtextrm{ if } ineq j \
end{cases}
end{equation}
Then for $f_1$:
begin{eqnarray}
f_1left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_1left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_1left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
x
end{eqnarray}
And $f_2$:
begin{eqnarray}
f_2left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_2left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_2left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
y
end{eqnarray}
Then $B^{*}={f_1,f_2}$
$endgroup$
Be
begin{equation}
V = leftlbrace
left[begin{array}{c}
x \
y \
z \
end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
end{equation}
Then $z=-x-y$, thus basis $B$ is:
begin{equation}
B = leftlbrace
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
,
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right] rightrbrace
end{equation}
Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
begin{equation}
delta_{ij}=begin{cases}
1 quadtextrm{ if } i=j \
0 quadtextrm{ if } ineq j \
end{cases}
end{equation}
Then for $f_1$:
begin{eqnarray}
f_1left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_1left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_1left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_1left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
x
end{eqnarray}
And $f_2$:
begin{eqnarray}
f_2left(
left[begin{array}{c}
x \
y \
z \
end{array}right]
right)
=
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
xf_2left(
left[begin{array}{c}
1 \
0 \
-1 \
end{array}right]
right)
+
yf_2left(
left[begin{array}{c}
0 \
1 \
-1 \
end{array}right]
right) \
f_2left(
left[begin{array}{c}
x \
y \
-x-y \
end{array}right]
right)
&=&
y
end{eqnarray}
Then $B^{*}={f_1,f_2}$
answered Jan 2 at 19:25
El PastaEl Pasta
35115
35115
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059814%2ffinding-b-the-dual-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
$endgroup$
– bounceback
Jan 2 at 18:52
$begingroup$
@bounceback explained very well, thanks!
$endgroup$
– Tegernako
Jan 2 at 19:44