Finding $B^*$, the dual basis












2












$begingroup$


Find a basis $B$ for
$$V = left{ left[
begin{array}{cc}
x\
y\
z
end{array}
right] in mathbb{R}^3 vert x+y+z = 0right}$$
and then find $B^*$, the dual basis for $B$.



The way we learned it was that given a basis, we build a matrix A whose columns is the vectors, find $A^{-1}$, and those build linear functionals that are the rows of the inverse matrix.



For example, if $V=mathbb{R}^2$ and $ B = $$left{ left[
begin{array}{cc}
3\
4
end{array}
right], left[
begin{array}{c}
5\
7
end{array}
right]right} $
, then $ A = $$ left[
begin{array}{cc}
3&5\
4&7
end{array}
right]$
, then $A^{-1} = $$ left[
begin{array}{cc}
7&-5\
-4&3
end{array}
right]$
, and the dual basis $B^* = (l_1, l_2)$ when :



$ l_1= left( left[
begin{array}{cc}
x\
y\
end{array}
right]right) = 7x_1 - 5x_2 $



$ l_2= left(left[
begin{array}{cc}
x\
y\
end{array}
right]right) = -4x_1 + 3x_2 $



However, when finding a basis for $V$, I get to the following solution vector
$$left[begin{array}{cc}
-y-z\
y\
z
end{array}
right] = y left[begin{array}{cc}
-1\
1\
0
end{array}
right] + z left[begin{array}{cc}
-1\
0\
1
end{array}
right]$$



If I build a matrix out of the basis$ left{ left[begin{array}{cc}
-1\
1\
0
end{array}
right] , left[begin{array}{cc}
-1\
0\
1
end{array}
right] right}$
I will have a matrix that is $3times2$ and I cannot inverse this.
How to proceed from here?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
    $endgroup$
    – bounceback
    Jan 2 at 18:52










  • $begingroup$
    @bounceback explained very well, thanks!
    $endgroup$
    – Tegernako
    Jan 2 at 19:44
















2












$begingroup$


Find a basis $B$ for
$$V = left{ left[
begin{array}{cc}
x\
y\
z
end{array}
right] in mathbb{R}^3 vert x+y+z = 0right}$$
and then find $B^*$, the dual basis for $B$.



The way we learned it was that given a basis, we build a matrix A whose columns is the vectors, find $A^{-1}$, and those build linear functionals that are the rows of the inverse matrix.



For example, if $V=mathbb{R}^2$ and $ B = $$left{ left[
begin{array}{cc}
3\
4
end{array}
right], left[
begin{array}{c}
5\
7
end{array}
right]right} $
, then $ A = $$ left[
begin{array}{cc}
3&5\
4&7
end{array}
right]$
, then $A^{-1} = $$ left[
begin{array}{cc}
7&-5\
-4&3
end{array}
right]$
, and the dual basis $B^* = (l_1, l_2)$ when :



$ l_1= left( left[
begin{array}{cc}
x\
y\
end{array}
right]right) = 7x_1 - 5x_2 $



$ l_2= left(left[
begin{array}{cc}
x\
y\
end{array}
right]right) = -4x_1 + 3x_2 $



However, when finding a basis for $V$, I get to the following solution vector
$$left[begin{array}{cc}
-y-z\
y\
z
end{array}
right] = y left[begin{array}{cc}
-1\
1\
0
end{array}
right] + z left[begin{array}{cc}
-1\
0\
1
end{array}
right]$$



If I build a matrix out of the basis$ left{ left[begin{array}{cc}
-1\
1\
0
end{array}
right] , left[begin{array}{cc}
-1\
0\
1
end{array}
right] right}$
I will have a matrix that is $3times2$ and I cannot inverse this.
How to proceed from here?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
    $endgroup$
    – bounceback
    Jan 2 at 18:52










  • $begingroup$
    @bounceback explained very well, thanks!
    $endgroup$
    – Tegernako
    Jan 2 at 19:44














2












2








2





$begingroup$


Find a basis $B$ for
$$V = left{ left[
begin{array}{cc}
x\
y\
z
end{array}
right] in mathbb{R}^3 vert x+y+z = 0right}$$
and then find $B^*$, the dual basis for $B$.



The way we learned it was that given a basis, we build a matrix A whose columns is the vectors, find $A^{-1}$, and those build linear functionals that are the rows of the inverse matrix.



For example, if $V=mathbb{R}^2$ and $ B = $$left{ left[
begin{array}{cc}
3\
4
end{array}
right], left[
begin{array}{c}
5\
7
end{array}
right]right} $
, then $ A = $$ left[
begin{array}{cc}
3&5\
4&7
end{array}
right]$
, then $A^{-1} = $$ left[
begin{array}{cc}
7&-5\
-4&3
end{array}
right]$
, and the dual basis $B^* = (l_1, l_2)$ when :



$ l_1= left( left[
begin{array}{cc}
x\
y\
end{array}
right]right) = 7x_1 - 5x_2 $



$ l_2= left(left[
begin{array}{cc}
x\
y\
end{array}
right]right) = -4x_1 + 3x_2 $



However, when finding a basis for $V$, I get to the following solution vector
$$left[begin{array}{cc}
-y-z\
y\
z
end{array}
right] = y left[begin{array}{cc}
-1\
1\
0
end{array}
right] + z left[begin{array}{cc}
-1\
0\
1
end{array}
right]$$



If I build a matrix out of the basis$ left{ left[begin{array}{cc}
-1\
1\
0
end{array}
right] , left[begin{array}{cc}
-1\
0\
1
end{array}
right] right}$
I will have a matrix that is $3times2$ and I cannot inverse this.
How to proceed from here?










share|cite|improve this question











$endgroup$




Find a basis $B$ for
$$V = left{ left[
begin{array}{cc}
x\
y\
z
end{array}
right] in mathbb{R}^3 vert x+y+z = 0right}$$
and then find $B^*$, the dual basis for $B$.



The way we learned it was that given a basis, we build a matrix A whose columns is the vectors, find $A^{-1}$, and those build linear functionals that are the rows of the inverse matrix.



For example, if $V=mathbb{R}^2$ and $ B = $$left{ left[
begin{array}{cc}
3\
4
end{array}
right], left[
begin{array}{c}
5\
7
end{array}
right]right} $
, then $ A = $$ left[
begin{array}{cc}
3&5\
4&7
end{array}
right]$
, then $A^{-1} = $$ left[
begin{array}{cc}
7&-5\
-4&3
end{array}
right]$
, and the dual basis $B^* = (l_1, l_2)$ when :



$ l_1= left( left[
begin{array}{cc}
x\
y\
end{array}
right]right) = 7x_1 - 5x_2 $



$ l_2= left(left[
begin{array}{cc}
x\
y\
end{array}
right]right) = -4x_1 + 3x_2 $



However, when finding a basis for $V$, I get to the following solution vector
$$left[begin{array}{cc}
-y-z\
y\
z
end{array}
right] = y left[begin{array}{cc}
-1\
1\
0
end{array}
right] + z left[begin{array}{cc}
-1\
0\
1
end{array}
right]$$



If I build a matrix out of the basis$ left{ left[begin{array}{cc}
-1\
1\
0
end{array}
right] , left[begin{array}{cc}
-1\
0\
1
end{array}
right] right}$
I will have a matrix that is $3times2$ and I cannot inverse this.
How to proceed from here?







linear-algebra dual-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 19:02









mechanodroid

27.1k62446




27.1k62446










asked Jan 2 at 18:42









TegernakoTegernako

897




897








  • 1




    $begingroup$
    You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
    $endgroup$
    – bounceback
    Jan 2 at 18:52










  • $begingroup$
    @bounceback explained very well, thanks!
    $endgroup$
    – Tegernako
    Jan 2 at 19:44














  • 1




    $begingroup$
    You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
    $endgroup$
    – bounceback
    Jan 2 at 18:52










  • $begingroup$
    @bounceback explained very well, thanks!
    $endgroup$
    – Tegernako
    Jan 2 at 19:44








1




1




$begingroup$
You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
$endgroup$
– bounceback
Jan 2 at 18:52




$begingroup$
You are correct, this method breaks down here. Have you tried following Misguided's reasoning on math.stackexchange.com/questions/1286100/…
$endgroup$
– bounceback
Jan 2 at 18:52












$begingroup$
@bounceback explained very well, thanks!
$endgroup$
– Tegernako
Jan 2 at 19:44




$begingroup$
@bounceback explained very well, thanks!
$endgroup$
– Tegernako
Jan 2 at 19:44










2 Answers
2






active

oldest

votes


















1












$begingroup$

By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$



Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
$$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Be
    begin{equation}
    V = leftlbrace
    left[begin{array}{c}
    x \
    y \
    z \
    end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
    end{equation}

    Then $z=-x-y$, thus basis $B$ is:
    begin{equation}
    B = leftlbrace
    left[begin{array}{c}
    1 \
    0 \
    -1 \
    end{array}right]
    ,
    left[begin{array}{c}
    0 \
    1 \
    -1 \
    end{array}right] rightrbrace
    end{equation}

    Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
    begin{equation}
    delta_{ij}=begin{cases}
    1 quadtextrm{ if } i=j \
    0 quadtextrm{ if } ineq j \
    end{cases}
    end{equation}

    Then for $f_1$:
    begin{eqnarray}
    f_1left(
    left[begin{array}{c}
    x \
    y \
    z \
    end{array}right]
    right)
    =
    f_1left(
    left[begin{array}{c}
    x \
    y \
    -x-y \
    end{array}right]
    right)
    &=&
    xf_1left(
    left[begin{array}{c}
    1 \
    0 \
    -1 \
    end{array}right]
    right)
    +
    yf_1left(
    left[begin{array}{c}
    0 \
    1 \
    -1 \
    end{array}right]
    right) \
    f_1left(
    left[begin{array}{c}
    x \
    y \
    -x-y \
    end{array}right]
    right)
    &=&
    x
    end{eqnarray}

    And $f_2$:
    begin{eqnarray}
    f_2left(
    left[begin{array}{c}
    x \
    y \
    z \
    end{array}right]
    right)
    =
    f_2left(
    left[begin{array}{c}
    x \
    y \
    -x-y \
    end{array}right]
    right)
    &=&
    xf_2left(
    left[begin{array}{c}
    1 \
    0 \
    -1 \
    end{array}right]
    right)
    +
    yf_2left(
    left[begin{array}{c}
    0 \
    1 \
    -1 \
    end{array}right]
    right) \
    f_2left(
    left[begin{array}{c}
    x \
    y \
    -x-y \
    end{array}right]
    right)
    &=&
    y
    end{eqnarray}

    Then $B^{*}={f_1,f_2}$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059814%2ffinding-b-the-dual-basis%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$



      Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
      $$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$



        Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
        $$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$



          Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
          $$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$






          share|cite|improve this answer









          $endgroup$



          By definition, the dual basis functionals $f_1, f_2$ are given on your basis ${v_1, v_2}$ as $$f_1(alpha_1v_1 + alpha_2v_2) = alpha_1, quad f_2(alpha_1v_1 + alpha_2v_2) = alpha_2$$



          Now $$f_1left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_1left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_1left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_1(yv_1 + zv_2) = y$$
          $$f_2left(begin{bmatrix} x \ y \ zend{bmatrix}right) = f_2left(begin{bmatrix} -y-z \ y \ zend{bmatrix}right) = f_2left(ybegin{bmatrix} -1 \ 1 \ 0end{bmatrix} + zbegin{bmatrix} -1 \ 0 \ -1end{bmatrix}right) = f_2(yv_1 + zv_2) = z$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 2 at 18:59









          mechanodroidmechanodroid

          27.1k62446




          27.1k62446























              1












              $begingroup$

              Be
              begin{equation}
              V = leftlbrace
              left[begin{array}{c}
              x \
              y \
              z \
              end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
              end{equation}

              Then $z=-x-y$, thus basis $B$ is:
              begin{equation}
              B = leftlbrace
              left[begin{array}{c}
              1 \
              0 \
              -1 \
              end{array}right]
              ,
              left[begin{array}{c}
              0 \
              1 \
              -1 \
              end{array}right] rightrbrace
              end{equation}

              Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
              begin{equation}
              delta_{ij}=begin{cases}
              1 quadtextrm{ if } i=j \
              0 quadtextrm{ if } ineq j \
              end{cases}
              end{equation}

              Then for $f_1$:
              begin{eqnarray}
              f_1left(
              left[begin{array}{c}
              x \
              y \
              z \
              end{array}right]
              right)
              =
              f_1left(
              left[begin{array}{c}
              x \
              y \
              -x-y \
              end{array}right]
              right)
              &=&
              xf_1left(
              left[begin{array}{c}
              1 \
              0 \
              -1 \
              end{array}right]
              right)
              +
              yf_1left(
              left[begin{array}{c}
              0 \
              1 \
              -1 \
              end{array}right]
              right) \
              f_1left(
              left[begin{array}{c}
              x \
              y \
              -x-y \
              end{array}right]
              right)
              &=&
              x
              end{eqnarray}

              And $f_2$:
              begin{eqnarray}
              f_2left(
              left[begin{array}{c}
              x \
              y \
              z \
              end{array}right]
              right)
              =
              f_2left(
              left[begin{array}{c}
              x \
              y \
              -x-y \
              end{array}right]
              right)
              &=&
              xf_2left(
              left[begin{array}{c}
              1 \
              0 \
              -1 \
              end{array}right]
              right)
              +
              yf_2left(
              left[begin{array}{c}
              0 \
              1 \
              -1 \
              end{array}right]
              right) \
              f_2left(
              left[begin{array}{c}
              x \
              y \
              -x-y \
              end{array}right]
              right)
              &=&
              y
              end{eqnarray}

              Then $B^{*}={f_1,f_2}$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Be
                begin{equation}
                V = leftlbrace
                left[begin{array}{c}
                x \
                y \
                z \
                end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
                end{equation}

                Then $z=-x-y$, thus basis $B$ is:
                begin{equation}
                B = leftlbrace
                left[begin{array}{c}
                1 \
                0 \
                -1 \
                end{array}right]
                ,
                left[begin{array}{c}
                0 \
                1 \
                -1 \
                end{array}right] rightrbrace
                end{equation}

                Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
                begin{equation}
                delta_{ij}=begin{cases}
                1 quadtextrm{ if } i=j \
                0 quadtextrm{ if } ineq j \
                end{cases}
                end{equation}

                Then for $f_1$:
                begin{eqnarray}
                f_1left(
                left[begin{array}{c}
                x \
                y \
                z \
                end{array}right]
                right)
                =
                f_1left(
                left[begin{array}{c}
                x \
                y \
                -x-y \
                end{array}right]
                right)
                &=&
                xf_1left(
                left[begin{array}{c}
                1 \
                0 \
                -1 \
                end{array}right]
                right)
                +
                yf_1left(
                left[begin{array}{c}
                0 \
                1 \
                -1 \
                end{array}right]
                right) \
                f_1left(
                left[begin{array}{c}
                x \
                y \
                -x-y \
                end{array}right]
                right)
                &=&
                x
                end{eqnarray}

                And $f_2$:
                begin{eqnarray}
                f_2left(
                left[begin{array}{c}
                x \
                y \
                z \
                end{array}right]
                right)
                =
                f_2left(
                left[begin{array}{c}
                x \
                y \
                -x-y \
                end{array}right]
                right)
                &=&
                xf_2left(
                left[begin{array}{c}
                1 \
                0 \
                -1 \
                end{array}right]
                right)
                +
                yf_2left(
                left[begin{array}{c}
                0 \
                1 \
                -1 \
                end{array}right]
                right) \
                f_2left(
                left[begin{array}{c}
                x \
                y \
                -x-y \
                end{array}right]
                right)
                &=&
                y
                end{eqnarray}

                Then $B^{*}={f_1,f_2}$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Be
                  begin{equation}
                  V = leftlbrace
                  left[begin{array}{c}
                  x \
                  y \
                  z \
                  end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
                  end{equation}

                  Then $z=-x-y$, thus basis $B$ is:
                  begin{equation}
                  B = leftlbrace
                  left[begin{array}{c}
                  1 \
                  0 \
                  -1 \
                  end{array}right]
                  ,
                  left[begin{array}{c}
                  0 \
                  1 \
                  -1 \
                  end{array}right] rightrbrace
                  end{equation}

                  Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
                  begin{equation}
                  delta_{ij}=begin{cases}
                  1 quadtextrm{ if } i=j \
                  0 quadtextrm{ if } ineq j \
                  end{cases}
                  end{equation}

                  Then for $f_1$:
                  begin{eqnarray}
                  f_1left(
                  left[begin{array}{c}
                  x \
                  y \
                  z \
                  end{array}right]
                  right)
                  =
                  f_1left(
                  left[begin{array}{c}
                  x \
                  y \
                  -x-y \
                  end{array}right]
                  right)
                  &=&
                  xf_1left(
                  left[begin{array}{c}
                  1 \
                  0 \
                  -1 \
                  end{array}right]
                  right)
                  +
                  yf_1left(
                  left[begin{array}{c}
                  0 \
                  1 \
                  -1 \
                  end{array}right]
                  right) \
                  f_1left(
                  left[begin{array}{c}
                  x \
                  y \
                  -x-y \
                  end{array}right]
                  right)
                  &=&
                  x
                  end{eqnarray}

                  And $f_2$:
                  begin{eqnarray}
                  f_2left(
                  left[begin{array}{c}
                  x \
                  y \
                  z \
                  end{array}right]
                  right)
                  =
                  f_2left(
                  left[begin{array}{c}
                  x \
                  y \
                  -x-y \
                  end{array}right]
                  right)
                  &=&
                  xf_2left(
                  left[begin{array}{c}
                  1 \
                  0 \
                  -1 \
                  end{array}right]
                  right)
                  +
                  yf_2left(
                  left[begin{array}{c}
                  0 \
                  1 \
                  -1 \
                  end{array}right]
                  right) \
                  f_2left(
                  left[begin{array}{c}
                  x \
                  y \
                  -x-y \
                  end{array}right]
                  right)
                  &=&
                  y
                  end{eqnarray}

                  Then $B^{*}={f_1,f_2}$






                  share|cite|improve this answer









                  $endgroup$



                  Be
                  begin{equation}
                  V = leftlbrace
                  left[begin{array}{c}
                  x \
                  y \
                  z \
                  end{array}right] in mathbb{R}^3 : x+y+z = 0 rightrbrace
                  end{equation}

                  Then $z=-x-y$, thus basis $B$ is:
                  begin{equation}
                  B = leftlbrace
                  left[begin{array}{c}
                  1 \
                  0 \
                  -1 \
                  end{array}right]
                  ,
                  left[begin{array}{c}
                  0 \
                  1 \
                  -1 \
                  end{array}right] rightrbrace
                  end{equation}

                  Where $B={v_1,v_2}$. The dual basis is given by $f_i(v_j)=delta_{ij}$ where $f_iin B^{*}$, $v_jin B$ and $delta_{ij}$ is the Kronecker delta since:
                  begin{equation}
                  delta_{ij}=begin{cases}
                  1 quadtextrm{ if } i=j \
                  0 quadtextrm{ if } ineq j \
                  end{cases}
                  end{equation}

                  Then for $f_1$:
                  begin{eqnarray}
                  f_1left(
                  left[begin{array}{c}
                  x \
                  y \
                  z \
                  end{array}right]
                  right)
                  =
                  f_1left(
                  left[begin{array}{c}
                  x \
                  y \
                  -x-y \
                  end{array}right]
                  right)
                  &=&
                  xf_1left(
                  left[begin{array}{c}
                  1 \
                  0 \
                  -1 \
                  end{array}right]
                  right)
                  +
                  yf_1left(
                  left[begin{array}{c}
                  0 \
                  1 \
                  -1 \
                  end{array}right]
                  right) \
                  f_1left(
                  left[begin{array}{c}
                  x \
                  y \
                  -x-y \
                  end{array}right]
                  right)
                  &=&
                  x
                  end{eqnarray}

                  And $f_2$:
                  begin{eqnarray}
                  f_2left(
                  left[begin{array}{c}
                  x \
                  y \
                  z \
                  end{array}right]
                  right)
                  =
                  f_2left(
                  left[begin{array}{c}
                  x \
                  y \
                  -x-y \
                  end{array}right]
                  right)
                  &=&
                  xf_2left(
                  left[begin{array}{c}
                  1 \
                  0 \
                  -1 \
                  end{array}right]
                  right)
                  +
                  yf_2left(
                  left[begin{array}{c}
                  0 \
                  1 \
                  -1 \
                  end{array}right]
                  right) \
                  f_2left(
                  left[begin{array}{c}
                  x \
                  y \
                  -x-y \
                  end{array}right]
                  right)
                  &=&
                  y
                  end{eqnarray}

                  Then $B^{*}={f_1,f_2}$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 2 at 19:25









                  El PastaEl Pasta

                  35115




                  35115






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059814%2ffinding-b-the-dual-basis%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                      How to fix TextFormField cause rebuild widget in Flutter