Measure theory integral
$begingroup$
This is a qualifying exam practice question - so not being graded for homework purposes, just studying!
Calculate $lim_{n rightarrow infty} int_0^infty frac{x^n}{ x^{(n+3)}+1} dx$
I tried the following:
$lim_{n rightarrow infty} int_0^infty frac{x^n}{ x^{(n+3)}+1} , dx$ = $frac{d}{dn}int_0^infty int_0^inftyfrac{x^n}{ x^{(n+3)}+1}dn , dx$ = -$frac{d}{dn} int_0^infty frac{ln(x^3+1}{x^3 ln(x)} , dx$
Not really sure where to go from here, any advice would be appreciated!
real-analysis measure-theory convergence lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
This is a qualifying exam practice question - so not being graded for homework purposes, just studying!
Calculate $lim_{n rightarrow infty} int_0^infty frac{x^n}{ x^{(n+3)}+1} dx$
I tried the following:
$lim_{n rightarrow infty} int_0^infty frac{x^n}{ x^{(n+3)}+1} , dx$ = $frac{d}{dn}int_0^infty int_0^inftyfrac{x^n}{ x^{(n+3)}+1}dn , dx$ = -$frac{d}{dn} int_0^infty frac{ln(x^3+1}{x^3 ln(x)} , dx$
Not really sure where to go from here, any advice would be appreciated!
real-analysis measure-theory convergence lebesgue-integral lebesgue-measure
$endgroup$
3
$begingroup$
I'm trying to understand your thinking when you went from $lim_{ntoinfty}$ to $frac{d}{dn}int_0^infty dn$. I don't see how that could work.
$endgroup$
– Teepeemm
Jan 5 at 15:35
$begingroup$
(Another take on Teepeemm's comment:) $frac{mathrm{d}}{mathrm{d}n} langle text{expression containing no "$n$"s} rangle = 0$.
$endgroup$
– Eric Towers
Jan 5 at 22:58
add a comment |
$begingroup$
This is a qualifying exam practice question - so not being graded for homework purposes, just studying!
Calculate $lim_{n rightarrow infty} int_0^infty frac{x^n}{ x^{(n+3)}+1} dx$
I tried the following:
$lim_{n rightarrow infty} int_0^infty frac{x^n}{ x^{(n+3)}+1} , dx$ = $frac{d}{dn}int_0^infty int_0^inftyfrac{x^n}{ x^{(n+3)}+1}dn , dx$ = -$frac{d}{dn} int_0^infty frac{ln(x^3+1}{x^3 ln(x)} , dx$
Not really sure where to go from here, any advice would be appreciated!
real-analysis measure-theory convergence lebesgue-integral lebesgue-measure
$endgroup$
This is a qualifying exam practice question - so not being graded for homework purposes, just studying!
Calculate $lim_{n rightarrow infty} int_0^infty frac{x^n}{ x^{(n+3)}+1} dx$
I tried the following:
$lim_{n rightarrow infty} int_0^infty frac{x^n}{ x^{(n+3)}+1} , dx$ = $frac{d}{dn}int_0^infty int_0^inftyfrac{x^n}{ x^{(n+3)}+1}dn , dx$ = -$frac{d}{dn} int_0^infty frac{ln(x^3+1}{x^3 ln(x)} , dx$
Not really sure where to go from here, any advice would be appreciated!
real-analysis measure-theory convergence lebesgue-integral lebesgue-measure
real-analysis measure-theory convergence lebesgue-integral lebesgue-measure
edited Jan 5 at 15:02
md2perpe
7,80111028
7,80111028
asked Jan 5 at 14:01
Math LadyMath Lady
1196
1196
3
$begingroup$
I'm trying to understand your thinking when you went from $lim_{ntoinfty}$ to $frac{d}{dn}int_0^infty dn$. I don't see how that could work.
$endgroup$
– Teepeemm
Jan 5 at 15:35
$begingroup$
(Another take on Teepeemm's comment:) $frac{mathrm{d}}{mathrm{d}n} langle text{expression containing no "$n$"s} rangle = 0$.
$endgroup$
– Eric Towers
Jan 5 at 22:58
add a comment |
3
$begingroup$
I'm trying to understand your thinking when you went from $lim_{ntoinfty}$ to $frac{d}{dn}int_0^infty dn$. I don't see how that could work.
$endgroup$
– Teepeemm
Jan 5 at 15:35
$begingroup$
(Another take on Teepeemm's comment:) $frac{mathrm{d}}{mathrm{d}n} langle text{expression containing no "$n$"s} rangle = 0$.
$endgroup$
– Eric Towers
Jan 5 at 22:58
3
3
$begingroup$
I'm trying to understand your thinking when you went from $lim_{ntoinfty}$ to $frac{d}{dn}int_0^infty dn$. I don't see how that could work.
$endgroup$
– Teepeemm
Jan 5 at 15:35
$begingroup$
I'm trying to understand your thinking when you went from $lim_{ntoinfty}$ to $frac{d}{dn}int_0^infty dn$. I don't see how that could work.
$endgroup$
– Teepeemm
Jan 5 at 15:35
$begingroup$
(Another take on Teepeemm's comment:) $frac{mathrm{d}}{mathrm{d}n} langle text{expression containing no "$n$"s} rangle = 0$.
$endgroup$
– Eric Towers
Jan 5 at 22:58
$begingroup$
(Another take on Teepeemm's comment:) $frac{mathrm{d}}{mathrm{d}n} langle text{expression containing no "$n$"s} rangle = 0$.
$endgroup$
– Eric Towers
Jan 5 at 22:58
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:
You have $$lim_n int_0^infty frac{x^n}{x^{n+3}+1} = lim_n int_0^1 frac{x^n}{x^{n+3}+1}+lim_n int_1^infty frac{x^n}{x^{n+3}+1}$$
Use on each term the dominated convergence theorem to get the limits inside. If $0<x<1$ then $x^nrightarrow 0$ so the first term is easy to calculate.
The second converges to $frac{1}{x^3}$ and then you need to evaluate $int_1^infty frac{1}{x^3} dx$.
$endgroup$
add a comment |
$begingroup$
Hint. Note that
$$int_0^{infty}frac{x^n}{ x^{n+3}+1},dx=int_0^{1}frac{x^n}{ x^{n+3}+1},dx+int_1^{infty}frac{dx}{x^3}-int_1^{infty}frac{dx}{x^3( x^{n+3}+1)},$$
where
$$0leq int_0^1frac{x^n}{ x^{n+3}+1},dx leq int_0^1 x^n ,dx=left[frac{x^{n+1}}{n+1}right]_0^{1}=frac{1}{n+1},$$
and
$$0leq int_1^{infty}frac{dx}{x^3( x^{n+3}+1)}leq
int_1^{infty}frac{1}{ x^{n+3}},dx=left[-frac{1}{(n+2)x^{n+2}}right]_1^{infty}=frac{1}{n+2}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062748%2fmeasure-theory-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
You have $$lim_n int_0^infty frac{x^n}{x^{n+3}+1} = lim_n int_0^1 frac{x^n}{x^{n+3}+1}+lim_n int_1^infty frac{x^n}{x^{n+3}+1}$$
Use on each term the dominated convergence theorem to get the limits inside. If $0<x<1$ then $x^nrightarrow 0$ so the first term is easy to calculate.
The second converges to $frac{1}{x^3}$ and then you need to evaluate $int_1^infty frac{1}{x^3} dx$.
$endgroup$
add a comment |
$begingroup$
Hint:
You have $$lim_n int_0^infty frac{x^n}{x^{n+3}+1} = lim_n int_0^1 frac{x^n}{x^{n+3}+1}+lim_n int_1^infty frac{x^n}{x^{n+3}+1}$$
Use on each term the dominated convergence theorem to get the limits inside. If $0<x<1$ then $x^nrightarrow 0$ so the first term is easy to calculate.
The second converges to $frac{1}{x^3}$ and then you need to evaluate $int_1^infty frac{1}{x^3} dx$.
$endgroup$
add a comment |
$begingroup$
Hint:
You have $$lim_n int_0^infty frac{x^n}{x^{n+3}+1} = lim_n int_0^1 frac{x^n}{x^{n+3}+1}+lim_n int_1^infty frac{x^n}{x^{n+3}+1}$$
Use on each term the dominated convergence theorem to get the limits inside. If $0<x<1$ then $x^nrightarrow 0$ so the first term is easy to calculate.
The second converges to $frac{1}{x^3}$ and then you need to evaluate $int_1^infty frac{1}{x^3} dx$.
$endgroup$
Hint:
You have $$lim_n int_0^infty frac{x^n}{x^{n+3}+1} = lim_n int_0^1 frac{x^n}{x^{n+3}+1}+lim_n int_1^infty frac{x^n}{x^{n+3}+1}$$
Use on each term the dominated convergence theorem to get the limits inside. If $0<x<1$ then $x^nrightarrow 0$ so the first term is easy to calculate.
The second converges to $frac{1}{x^3}$ and then you need to evaluate $int_1^infty frac{1}{x^3} dx$.
answered Jan 5 at 14:09
YankoYanko
6,3981528
6,3981528
add a comment |
add a comment |
$begingroup$
Hint. Note that
$$int_0^{infty}frac{x^n}{ x^{n+3}+1},dx=int_0^{1}frac{x^n}{ x^{n+3}+1},dx+int_1^{infty}frac{dx}{x^3}-int_1^{infty}frac{dx}{x^3( x^{n+3}+1)},$$
where
$$0leq int_0^1frac{x^n}{ x^{n+3}+1},dx leq int_0^1 x^n ,dx=left[frac{x^{n+1}}{n+1}right]_0^{1}=frac{1}{n+1},$$
and
$$0leq int_1^{infty}frac{dx}{x^3( x^{n+3}+1)}leq
int_1^{infty}frac{1}{ x^{n+3}},dx=left[-frac{1}{(n+2)x^{n+2}}right]_1^{infty}=frac{1}{n+2}.$$
$endgroup$
add a comment |
$begingroup$
Hint. Note that
$$int_0^{infty}frac{x^n}{ x^{n+3}+1},dx=int_0^{1}frac{x^n}{ x^{n+3}+1},dx+int_1^{infty}frac{dx}{x^3}-int_1^{infty}frac{dx}{x^3( x^{n+3}+1)},$$
where
$$0leq int_0^1frac{x^n}{ x^{n+3}+1},dx leq int_0^1 x^n ,dx=left[frac{x^{n+1}}{n+1}right]_0^{1}=frac{1}{n+1},$$
and
$$0leq int_1^{infty}frac{dx}{x^3( x^{n+3}+1)}leq
int_1^{infty}frac{1}{ x^{n+3}},dx=left[-frac{1}{(n+2)x^{n+2}}right]_1^{infty}=frac{1}{n+2}.$$
$endgroup$
add a comment |
$begingroup$
Hint. Note that
$$int_0^{infty}frac{x^n}{ x^{n+3}+1},dx=int_0^{1}frac{x^n}{ x^{n+3}+1},dx+int_1^{infty}frac{dx}{x^3}-int_1^{infty}frac{dx}{x^3( x^{n+3}+1)},$$
where
$$0leq int_0^1frac{x^n}{ x^{n+3}+1},dx leq int_0^1 x^n ,dx=left[frac{x^{n+1}}{n+1}right]_0^{1}=frac{1}{n+1},$$
and
$$0leq int_1^{infty}frac{dx}{x^3( x^{n+3}+1)}leq
int_1^{infty}frac{1}{ x^{n+3}},dx=left[-frac{1}{(n+2)x^{n+2}}right]_1^{infty}=frac{1}{n+2}.$$
$endgroup$
Hint. Note that
$$int_0^{infty}frac{x^n}{ x^{n+3}+1},dx=int_0^{1}frac{x^n}{ x^{n+3}+1},dx+int_1^{infty}frac{dx}{x^3}-int_1^{infty}frac{dx}{x^3( x^{n+3}+1)},$$
where
$$0leq int_0^1frac{x^n}{ x^{n+3}+1},dx leq int_0^1 x^n ,dx=left[frac{x^{n+1}}{n+1}right]_0^{1}=frac{1}{n+1},$$
and
$$0leq int_1^{infty}frac{dx}{x^3( x^{n+3}+1)}leq
int_1^{infty}frac{1}{ x^{n+3}},dx=left[-frac{1}{(n+2)x^{n+2}}right]_1^{infty}=frac{1}{n+2}.$$
edited Jan 5 at 15:40
answered Jan 5 at 14:32


Robert ZRobert Z
95.2k1063134
95.2k1063134
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062748%2fmeasure-theory-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
I'm trying to understand your thinking when you went from $lim_{ntoinfty}$ to $frac{d}{dn}int_0^infty dn$. I don't see how that could work.
$endgroup$
– Teepeemm
Jan 5 at 15:35
$begingroup$
(Another take on Teepeemm's comment:) $frac{mathrm{d}}{mathrm{d}n} langle text{expression containing no "$n$"s} rangle = 0$.
$endgroup$
– Eric Towers
Jan 5 at 22:58