Prove...
$begingroup$
I have to prove that the following limit is equal to $sqrt{pi/2}$:
$$lim_{ntoinfty}frac{2cdot4cdot6cdot...cdot(2n-2)(2n)}{1cdot3cdot5cdot...cdot(2n-1)}frac{1}{sqrt{2n+1}}=sqrtfrac{pi}{2}$$
In order to calculate this limit, we know that:
$$I_n=int_0^{frac{pi}{2}}sin^nx dxquad I_{2n}=frac{1cdot3cdot..cdot(2n-3)(2n-1)}{2cdot4cdot..cdot(2n-2)(2n)}frac{pi}{2}quad I_{2n+1}=frac{2cdot4cdot..cdot(2n-2)(2n)}{1cdot3cdot..cdot(2n-1)(2n+1)}$$
I have tried to rewrite the limit as:
$$lim_{ntoinfty}frac{1}{I_{2n}sqrt{2n+1}}frac{pi}{2}$$
But I don't know how to continue... Could you help me? Thanks in advance!
integration sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
I have to prove that the following limit is equal to $sqrt{pi/2}$:
$$lim_{ntoinfty}frac{2cdot4cdot6cdot...cdot(2n-2)(2n)}{1cdot3cdot5cdot...cdot(2n-1)}frac{1}{sqrt{2n+1}}=sqrtfrac{pi}{2}$$
In order to calculate this limit, we know that:
$$I_n=int_0^{frac{pi}{2}}sin^nx dxquad I_{2n}=frac{1cdot3cdot..cdot(2n-3)(2n-1)}{2cdot4cdot..cdot(2n-2)(2n)}frac{pi}{2}quad I_{2n+1}=frac{2cdot4cdot..cdot(2n-2)(2n)}{1cdot3cdot..cdot(2n-1)(2n+1)}$$
I have tried to rewrite the limit as:
$$lim_{ntoinfty}frac{1}{I_{2n}sqrt{2n+1}}frac{pi}{2}$$
But I don't know how to continue... Could you help me? Thanks in advance!
integration sequences-and-series limits
$endgroup$
1
$begingroup$
You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
$endgroup$
– Paramanand Singh
Jan 6 at 6:05
add a comment |
$begingroup$
I have to prove that the following limit is equal to $sqrt{pi/2}$:
$$lim_{ntoinfty}frac{2cdot4cdot6cdot...cdot(2n-2)(2n)}{1cdot3cdot5cdot...cdot(2n-1)}frac{1}{sqrt{2n+1}}=sqrtfrac{pi}{2}$$
In order to calculate this limit, we know that:
$$I_n=int_0^{frac{pi}{2}}sin^nx dxquad I_{2n}=frac{1cdot3cdot..cdot(2n-3)(2n-1)}{2cdot4cdot..cdot(2n-2)(2n)}frac{pi}{2}quad I_{2n+1}=frac{2cdot4cdot..cdot(2n-2)(2n)}{1cdot3cdot..cdot(2n-1)(2n+1)}$$
I have tried to rewrite the limit as:
$$lim_{ntoinfty}frac{1}{I_{2n}sqrt{2n+1}}frac{pi}{2}$$
But I don't know how to continue... Could you help me? Thanks in advance!
integration sequences-and-series limits
$endgroup$
I have to prove that the following limit is equal to $sqrt{pi/2}$:
$$lim_{ntoinfty}frac{2cdot4cdot6cdot...cdot(2n-2)(2n)}{1cdot3cdot5cdot...cdot(2n-1)}frac{1}{sqrt{2n+1}}=sqrtfrac{pi}{2}$$
In order to calculate this limit, we know that:
$$I_n=int_0^{frac{pi}{2}}sin^nx dxquad I_{2n}=frac{1cdot3cdot..cdot(2n-3)(2n-1)}{2cdot4cdot..cdot(2n-2)(2n)}frac{pi}{2}quad I_{2n+1}=frac{2cdot4cdot..cdot(2n-2)(2n)}{1cdot3cdot..cdot(2n-1)(2n+1)}$$
I have tried to rewrite the limit as:
$$lim_{ntoinfty}frac{1}{I_{2n}sqrt{2n+1}}frac{pi}{2}$$
But I don't know how to continue... Could you help me? Thanks in advance!
integration sequences-and-series limits
integration sequences-and-series limits
edited Jan 6 at 6:07


Paramanand Singh
49.5k556162
49.5k556162
asked Jan 5 at 10:15
GibbsGibbs
131111
131111
1
$begingroup$
You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
$endgroup$
– Paramanand Singh
Jan 6 at 6:05
add a comment |
1
$begingroup$
You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
$endgroup$
– Paramanand Singh
Jan 6 at 6:05
1
1
$begingroup$
You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
$endgroup$
– Paramanand Singh
Jan 6 at 6:05
$begingroup$
You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
$endgroup$
– Paramanand Singh
Jan 6 at 6:05
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Have a look here: Wallis' integrals and here.
$endgroup$
1
$begingroup$
Amazingly useful link. Thank you a lot!!
$endgroup$
– Gibbs
Jan 5 at 10:36
add a comment |
$begingroup$
Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$
Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$
Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$
Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$
Which easily evaluates to $sqrt {frac {pi}{2}}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062586%2fprove-lim-n-to-infty-frac2-cdot4-cdot6-cdot-cdot2n-22n1-cdot3-cdot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Have a look here: Wallis' integrals and here.
$endgroup$
1
$begingroup$
Amazingly useful link. Thank you a lot!!
$endgroup$
– Gibbs
Jan 5 at 10:36
add a comment |
$begingroup$
Have a look here: Wallis' integrals and here.
$endgroup$
1
$begingroup$
Amazingly useful link. Thank you a lot!!
$endgroup$
– Gibbs
Jan 5 at 10:36
add a comment |
$begingroup$
Have a look here: Wallis' integrals and here.
$endgroup$
Have a look here: Wallis' integrals and here.
answered Jan 5 at 10:28


Olivier OloaOlivier Oloa
108k17177294
108k17177294
1
$begingroup$
Amazingly useful link. Thank you a lot!!
$endgroup$
– Gibbs
Jan 5 at 10:36
add a comment |
1
$begingroup$
Amazingly useful link. Thank you a lot!!
$endgroup$
– Gibbs
Jan 5 at 10:36
1
1
$begingroup$
Amazingly useful link. Thank you a lot!!
$endgroup$
– Gibbs
Jan 5 at 10:36
$begingroup$
Amazingly useful link. Thank you a lot!!
$endgroup$
– Gibbs
Jan 5 at 10:36
add a comment |
$begingroup$
Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$
Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$
Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$
Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$
Which easily evaluates to $sqrt {frac {pi}{2}}$
$endgroup$
add a comment |
$begingroup$
Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$
Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$
Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$
Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$
Which easily evaluates to $sqrt {frac {pi}{2}}$
$endgroup$
add a comment |
$begingroup$
Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$
Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$
Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$
Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$
Which easily evaluates to $sqrt {frac {pi}{2}}$
$endgroup$
Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$
Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$
Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$
Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$
Which easily evaluates to $sqrt {frac {pi}{2}}$
answered Jan 6 at 4:00


DigammaDigamma
6,1621440
6,1621440
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062586%2fprove-lim-n-to-infty-frac2-cdot4-cdot6-cdot-cdot2n-22n1-cdot3-cdot%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
$endgroup$
– Paramanand Singh
Jan 6 at 6:05