Prove...












7












$begingroup$


I have to prove that the following limit is equal to $sqrt{pi/2}$:
$$lim_{ntoinfty}frac{2cdot4cdot6cdot...cdot(2n-2)(2n)}{1cdot3cdot5cdot...cdot(2n-1)}frac{1}{sqrt{2n+1}}=sqrtfrac{pi}{2}$$



In order to calculate this limit, we know that:
$$I_n=int_0^{frac{pi}{2}}sin^nx dxquad I_{2n}=frac{1cdot3cdot..cdot(2n-3)(2n-1)}{2cdot4cdot..cdot(2n-2)(2n)}frac{pi}{2}quad I_{2n+1}=frac{2cdot4cdot..cdot(2n-2)(2n)}{1cdot3cdot..cdot(2n-1)(2n+1)}$$
I have tried to rewrite the limit as:
$$lim_{ntoinfty}frac{1}{I_{2n}sqrt{2n+1}}frac{pi}{2}$$
But I don't know how to continue... Could you help me? Thanks in advance!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
    $endgroup$
    – Paramanand Singh
    Jan 6 at 6:05
















7












$begingroup$


I have to prove that the following limit is equal to $sqrt{pi/2}$:
$$lim_{ntoinfty}frac{2cdot4cdot6cdot...cdot(2n-2)(2n)}{1cdot3cdot5cdot...cdot(2n-1)}frac{1}{sqrt{2n+1}}=sqrtfrac{pi}{2}$$



In order to calculate this limit, we know that:
$$I_n=int_0^{frac{pi}{2}}sin^nx dxquad I_{2n}=frac{1cdot3cdot..cdot(2n-3)(2n-1)}{2cdot4cdot..cdot(2n-2)(2n)}frac{pi}{2}quad I_{2n+1}=frac{2cdot4cdot..cdot(2n-2)(2n)}{1cdot3cdot..cdot(2n-1)(2n+1)}$$
I have tried to rewrite the limit as:
$$lim_{ntoinfty}frac{1}{I_{2n}sqrt{2n+1}}frac{pi}{2}$$
But I don't know how to continue... Could you help me? Thanks in advance!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
    $endgroup$
    – Paramanand Singh
    Jan 6 at 6:05














7












7








7





$begingroup$


I have to prove that the following limit is equal to $sqrt{pi/2}$:
$$lim_{ntoinfty}frac{2cdot4cdot6cdot...cdot(2n-2)(2n)}{1cdot3cdot5cdot...cdot(2n-1)}frac{1}{sqrt{2n+1}}=sqrtfrac{pi}{2}$$



In order to calculate this limit, we know that:
$$I_n=int_0^{frac{pi}{2}}sin^nx dxquad I_{2n}=frac{1cdot3cdot..cdot(2n-3)(2n-1)}{2cdot4cdot..cdot(2n-2)(2n)}frac{pi}{2}quad I_{2n+1}=frac{2cdot4cdot..cdot(2n-2)(2n)}{1cdot3cdot..cdot(2n-1)(2n+1)}$$
I have tried to rewrite the limit as:
$$lim_{ntoinfty}frac{1}{I_{2n}sqrt{2n+1}}frac{pi}{2}$$
But I don't know how to continue... Could you help me? Thanks in advance!










share|cite|improve this question











$endgroup$




I have to prove that the following limit is equal to $sqrt{pi/2}$:
$$lim_{ntoinfty}frac{2cdot4cdot6cdot...cdot(2n-2)(2n)}{1cdot3cdot5cdot...cdot(2n-1)}frac{1}{sqrt{2n+1}}=sqrtfrac{pi}{2}$$



In order to calculate this limit, we know that:
$$I_n=int_0^{frac{pi}{2}}sin^nx dxquad I_{2n}=frac{1cdot3cdot..cdot(2n-3)(2n-1)}{2cdot4cdot..cdot(2n-2)(2n)}frac{pi}{2}quad I_{2n+1}=frac{2cdot4cdot..cdot(2n-2)(2n)}{1cdot3cdot..cdot(2n-1)(2n+1)}$$
I have tried to rewrite the limit as:
$$lim_{ntoinfty}frac{1}{I_{2n}sqrt{2n+1}}frac{pi}{2}$$
But I don't know how to continue... Could you help me? Thanks in advance!







integration sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 6:07









Paramanand Singh

49.5k556162




49.5k556162










asked Jan 5 at 10:15









GibbsGibbs

131111




131111








  • 1




    $begingroup$
    You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
    $endgroup$
    – Paramanand Singh
    Jan 6 at 6:05














  • 1




    $begingroup$
    You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
    $endgroup$
    – Paramanand Singh
    Jan 6 at 6:05








1




1




$begingroup$
You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
$endgroup$
– Paramanand Singh
Jan 6 at 6:05




$begingroup$
You are proceeding in correct direction. Just prove that $I_{2n}/I_{2n+1}to 1$. This is done via Squeeze theorem using $I_{2n+1}leq I_{2n}leq I_{2n-1}$ and $I_{2n+1}=dfrac{2n}{2n+1}cdot I_{2n-1}$.
$endgroup$
– Paramanand Singh
Jan 6 at 6:05










2 Answers
2






active

oldest

votes


















2












$begingroup$

Have a look here: Wallis' integrals and here.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Amazingly useful link. Thank you a lot!!
    $endgroup$
    – Gibbs
    Jan 5 at 10:36



















3












$begingroup$

Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$



Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$



Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$



Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$



Which easily evaluates to $sqrt {frac {pi}{2}}$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062586%2fprove-lim-n-to-infty-frac2-cdot4-cdot6-cdot-cdot2n-22n1-cdot3-cdot%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Have a look here: Wallis' integrals and here.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Amazingly useful link. Thank you a lot!!
      $endgroup$
      – Gibbs
      Jan 5 at 10:36
















    2












    $begingroup$

    Have a look here: Wallis' integrals and here.






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Amazingly useful link. Thank you a lot!!
      $endgroup$
      – Gibbs
      Jan 5 at 10:36














    2












    2








    2





    $begingroup$

    Have a look here: Wallis' integrals and here.






    share|cite|improve this answer









    $endgroup$



    Have a look here: Wallis' integrals and here.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 5 at 10:28









    Olivier OloaOlivier Oloa

    108k17177294




    108k17177294








    • 1




      $begingroup$
      Amazingly useful link. Thank you a lot!!
      $endgroup$
      – Gibbs
      Jan 5 at 10:36














    • 1




      $begingroup$
      Amazingly useful link. Thank you a lot!!
      $endgroup$
      – Gibbs
      Jan 5 at 10:36








    1




    1




    $begingroup$
    Amazingly useful link. Thank you a lot!!
    $endgroup$
    – Gibbs
    Jan 5 at 10:36




    $begingroup$
    Amazingly useful link. Thank you a lot!!
    $endgroup$
    – Gibbs
    Jan 5 at 10:36











    3












    $begingroup$

    Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$



    Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$



    Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$



    Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$



    Which easily evaluates to $sqrt {frac {pi}{2}}$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$



      Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$



      Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$



      Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$



      Which easily evaluates to $sqrt {frac {pi}{2}}$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$



        Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$



        Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$



        Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$



        Which easily evaluates to $sqrt {frac {pi}{2}}$






        share|cite|improve this answer









        $endgroup$



        Using the double factorial notation we need to find $$lim_{ntoinfty} frac {(2n)!!}{(2n-1)!!sqrt {2n+1}}$$



        Now using the relation between double factorial and the factorial, the limit changes to $$lim_{ntoinfty} frac {2^{2n}(n!)^2}{(2n)!sqrt {2n+1}}$$



        Using Stirling's approximation for factorials we get $$lim_{ntoinfty} frac {2^{2n}cdot (2pi n)cdot left(frac ne right)^{2n}}{sqrt {2pi}cdotsqrt {2n} cdotleft(frac {2n}{e}right)^{2n} cdot sqrt {2n+1}}$$



        Hence limit changes to $$lim_{ntoinfty} frac {nsqrt {2pi}}{sqrt {2n} cdot sqrt {2n+1}}$$



        Which easily evaluates to $sqrt {frac {pi}{2}}$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 6 at 4:00









        DigammaDigamma

        6,1621440




        6,1621440






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062586%2fprove-lim-n-to-infty-frac2-cdot4-cdot6-cdot-cdot2n-22n1-cdot3-cdot%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith