Using the binomial expansion to show $sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$
$begingroup$
I have to show $$sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$$ using the binomial theorem. I haven't had any practice on these types of questions so i'm unsure as to how to proceed. Would anybody be able to what the method is for solving these types of questions, and, is there any general method of what we're trying to do? What's the thought process to solve these types of questions
Much appreciated.
Thank you
binomial-theorem
$endgroup$
add a comment |
$begingroup$
I have to show $$sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$$ using the binomial theorem. I haven't had any practice on these types of questions so i'm unsure as to how to proceed. Would anybody be able to what the method is for solving these types of questions, and, is there any general method of what we're trying to do? What's the thought process to solve these types of questions
Much appreciated.
Thank you
binomial-theorem
$endgroup$
1
$begingroup$
Use induction on $n$.
$endgroup$
– Wuestenfux
Jan 2 at 13:24
$begingroup$
Hint: $3/2=1+1/2$
$endgroup$
– Wojowu
Jan 2 at 13:25
$begingroup$
Proof by induction isn't on my syllabus. How do i do it without it?
$endgroup$
– Young's Modulus
Jan 2 at 13:25
$begingroup$
Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
$endgroup$
– Ethan Bolker
Jan 2 at 13:26
add a comment |
$begingroup$
I have to show $$sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$$ using the binomial theorem. I haven't had any practice on these types of questions so i'm unsure as to how to proceed. Would anybody be able to what the method is for solving these types of questions, and, is there any general method of what we're trying to do? What's the thought process to solve these types of questions
Much appreciated.
Thank you
binomial-theorem
$endgroup$
I have to show $$sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$$ using the binomial theorem. I haven't had any practice on these types of questions so i'm unsure as to how to proceed. Would anybody be able to what the method is for solving these types of questions, and, is there any general method of what we're trying to do? What's the thought process to solve these types of questions
Much appreciated.
Thank you
binomial-theorem
binomial-theorem
asked Jan 2 at 13:23


Young's ModulusYoung's Modulus
61
61
1
$begingroup$
Use induction on $n$.
$endgroup$
– Wuestenfux
Jan 2 at 13:24
$begingroup$
Hint: $3/2=1+1/2$
$endgroup$
– Wojowu
Jan 2 at 13:25
$begingroup$
Proof by induction isn't on my syllabus. How do i do it without it?
$endgroup$
– Young's Modulus
Jan 2 at 13:25
$begingroup$
Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
$endgroup$
– Ethan Bolker
Jan 2 at 13:26
add a comment |
1
$begingroup$
Use induction on $n$.
$endgroup$
– Wuestenfux
Jan 2 at 13:24
$begingroup$
Hint: $3/2=1+1/2$
$endgroup$
– Wojowu
Jan 2 at 13:25
$begingroup$
Proof by induction isn't on my syllabus. How do i do it without it?
$endgroup$
– Young's Modulus
Jan 2 at 13:25
$begingroup$
Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
$endgroup$
– Ethan Bolker
Jan 2 at 13:26
1
1
$begingroup$
Use induction on $n$.
$endgroup$
– Wuestenfux
Jan 2 at 13:24
$begingroup$
Use induction on $n$.
$endgroup$
– Wuestenfux
Jan 2 at 13:24
$begingroup$
Hint: $3/2=1+1/2$
$endgroup$
– Wojowu
Jan 2 at 13:25
$begingroup$
Hint: $3/2=1+1/2$
$endgroup$
– Wojowu
Jan 2 at 13:25
$begingroup$
Proof by induction isn't on my syllabus. How do i do it without it?
$endgroup$
– Young's Modulus
Jan 2 at 13:25
$begingroup$
Proof by induction isn't on my syllabus. How do i do it without it?
$endgroup$
– Young's Modulus
Jan 2 at 13:25
$begingroup$
Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
$endgroup$
– Ethan Bolker
Jan 2 at 13:26
$begingroup$
Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
$endgroup$
– Ethan Bolker
Jan 2 at 13:26
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$
$endgroup$
add a comment |
$begingroup$
Take $x=1/2$ and $y=1$ in the expansion
$$
(x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
$$
$endgroup$
add a comment |
$begingroup$
$$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
Last equation follows from binomial theorem.
$endgroup$
1
$begingroup$
Right, Of course, I somehow managed to overthink this. Thanks.
$endgroup$
– Young's Modulus
Jan 2 at 13:35
add a comment |
$begingroup$
There is a theorem (Binomial theorem, demostrable by induction) that shows you:
begin{equation}
(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
end{equation}
Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
$$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
Proof:
The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:
$$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
Then:
begin{eqnarray*}
(a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
(a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
(a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
(a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
end{eqnarray*}
And now the theorem is demostrated by induction. Here is a video of the demonstration.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059471%2fusing-the-binomial-expansion-to-show-sum-k-0n-n-choose-k-frac12k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$
$endgroup$
add a comment |
$begingroup$
$left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$
$endgroup$
add a comment |
$begingroup$
$left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$
$endgroup$
$left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$
answered Jan 2 at 13:30


Martín Vacas VignoloMartín Vacas Vignolo
3,811623
3,811623
add a comment |
add a comment |
$begingroup$
Take $x=1/2$ and $y=1$ in the expansion
$$
(x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
$$
$endgroup$
add a comment |
$begingroup$
Take $x=1/2$ and $y=1$ in the expansion
$$
(x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
$$
$endgroup$
add a comment |
$begingroup$
Take $x=1/2$ and $y=1$ in the expansion
$$
(x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
$$
$endgroup$
Take $x=1/2$ and $y=1$ in the expansion
$$
(x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
$$
answered Jan 2 at 13:27
BerkheimerBerkheimer
1,437924
1,437924
add a comment |
add a comment |
$begingroup$
$$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
Last equation follows from binomial theorem.
$endgroup$
1
$begingroup$
Right, Of course, I somehow managed to overthink this. Thanks.
$endgroup$
– Young's Modulus
Jan 2 at 13:35
add a comment |
$begingroup$
$$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
Last equation follows from binomial theorem.
$endgroup$
1
$begingroup$
Right, Of course, I somehow managed to overthink this. Thanks.
$endgroup$
– Young's Modulus
Jan 2 at 13:35
add a comment |
$begingroup$
$$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
Last equation follows from binomial theorem.
$endgroup$
$$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
Last equation follows from binomial theorem.
answered Jan 2 at 13:29
Thomas ShelbyThomas Shelby
2,119220
2,119220
1
$begingroup$
Right, Of course, I somehow managed to overthink this. Thanks.
$endgroup$
– Young's Modulus
Jan 2 at 13:35
add a comment |
1
$begingroup$
Right, Of course, I somehow managed to overthink this. Thanks.
$endgroup$
– Young's Modulus
Jan 2 at 13:35
1
1
$begingroup$
Right, Of course, I somehow managed to overthink this. Thanks.
$endgroup$
– Young's Modulus
Jan 2 at 13:35
$begingroup$
Right, Of course, I somehow managed to overthink this. Thanks.
$endgroup$
– Young's Modulus
Jan 2 at 13:35
add a comment |
$begingroup$
There is a theorem (Binomial theorem, demostrable by induction) that shows you:
begin{equation}
(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
end{equation}
Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
$$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
Proof:
The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:
$$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
Then:
begin{eqnarray*}
(a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
(a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
(a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
(a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
end{eqnarray*}
And now the theorem is demostrated by induction. Here is a video of the demonstration.
$endgroup$
add a comment |
$begingroup$
There is a theorem (Binomial theorem, demostrable by induction) that shows you:
begin{equation}
(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
end{equation}
Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
$$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
Proof:
The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:
$$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
Then:
begin{eqnarray*}
(a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
(a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
(a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
(a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
end{eqnarray*}
And now the theorem is demostrated by induction. Here is a video of the demonstration.
$endgroup$
add a comment |
$begingroup$
There is a theorem (Binomial theorem, demostrable by induction) that shows you:
begin{equation}
(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
end{equation}
Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
$$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
Proof:
The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:
$$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
Then:
begin{eqnarray*}
(a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
(a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
(a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
(a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
end{eqnarray*}
And now the theorem is demostrated by induction. Here is a video of the demonstration.
$endgroup$
There is a theorem (Binomial theorem, demostrable by induction) that shows you:
begin{equation}
(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
end{equation}
Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
$$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
Proof:
The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:
$$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
Then:
begin{eqnarray*}
(a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
(a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
(a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
(a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
(a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
(a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
end{eqnarray*}
And now the theorem is demostrated by induction. Here is a video of the demonstration.
edited Jan 10 at 0:18
answered Jan 2 at 13:31
El PastaEl Pasta
34515
34515
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059471%2fusing-the-binomial-expansion-to-show-sum-k-0n-n-choose-k-frac12k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Use induction on $n$.
$endgroup$
– Wuestenfux
Jan 2 at 13:24
$begingroup$
Hint: $3/2=1+1/2$
$endgroup$
– Wojowu
Jan 2 at 13:25
$begingroup$
Proof by induction isn't on my syllabus. How do i do it without it?
$endgroup$
– Young's Modulus
Jan 2 at 13:25
$begingroup$
Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
$endgroup$
– Ethan Bolker
Jan 2 at 13:26