Using the binomial expansion to show $sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$












1












$begingroup$


I have to show $$sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$$ using the binomial theorem. I haven't had any practice on these types of questions so i'm unsure as to how to proceed. Would anybody be able to what the method is for solving these types of questions, and, is there any general method of what we're trying to do? What's the thought process to solve these types of questions



Much appreciated.
Thank you










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Use induction on $n$.
    $endgroup$
    – Wuestenfux
    Jan 2 at 13:24










  • $begingroup$
    Hint: $3/2=1+1/2$
    $endgroup$
    – Wojowu
    Jan 2 at 13:25










  • $begingroup$
    Proof by induction isn't on my syllabus. How do i do it without it?
    $endgroup$
    – Young's Modulus
    Jan 2 at 13:25










  • $begingroup$
    Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
    $endgroup$
    – Ethan Bolker
    Jan 2 at 13:26
















1












$begingroup$


I have to show $$sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$$ using the binomial theorem. I haven't had any practice on these types of questions so i'm unsure as to how to proceed. Would anybody be able to what the method is for solving these types of questions, and, is there any general method of what we're trying to do? What's the thought process to solve these types of questions



Much appreciated.
Thank you










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Use induction on $n$.
    $endgroup$
    – Wuestenfux
    Jan 2 at 13:24










  • $begingroup$
    Hint: $3/2=1+1/2$
    $endgroup$
    – Wojowu
    Jan 2 at 13:25










  • $begingroup$
    Proof by induction isn't on my syllabus. How do i do it without it?
    $endgroup$
    – Young's Modulus
    Jan 2 at 13:25










  • $begingroup$
    Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
    $endgroup$
    – Ethan Bolker
    Jan 2 at 13:26














1












1








1





$begingroup$


I have to show $$sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$$ using the binomial theorem. I haven't had any practice on these types of questions so i'm unsure as to how to proceed. Would anybody be able to what the method is for solving these types of questions, and, is there any general method of what we're trying to do? What's the thought process to solve these types of questions



Much appreciated.
Thank you










share|cite|improve this question









$endgroup$




I have to show $$sum_{k=0}^n {n choose k} frac{1}{2^k} = (3/2)^n$$ using the binomial theorem. I haven't had any practice on these types of questions so i'm unsure as to how to proceed. Would anybody be able to what the method is for solving these types of questions, and, is there any general method of what we're trying to do? What's the thought process to solve these types of questions



Much appreciated.
Thank you







binomial-theorem






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 2 at 13:23









Young's ModulusYoung's Modulus

61




61








  • 1




    $begingroup$
    Use induction on $n$.
    $endgroup$
    – Wuestenfux
    Jan 2 at 13:24










  • $begingroup$
    Hint: $3/2=1+1/2$
    $endgroup$
    – Wojowu
    Jan 2 at 13:25










  • $begingroup$
    Proof by induction isn't on my syllabus. How do i do it without it?
    $endgroup$
    – Young's Modulus
    Jan 2 at 13:25










  • $begingroup$
    Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
    $endgroup$
    – Ethan Bolker
    Jan 2 at 13:26














  • 1




    $begingroup$
    Use induction on $n$.
    $endgroup$
    – Wuestenfux
    Jan 2 at 13:24










  • $begingroup$
    Hint: $3/2=1+1/2$
    $endgroup$
    – Wojowu
    Jan 2 at 13:25










  • $begingroup$
    Proof by induction isn't on my syllabus. How do i do it without it?
    $endgroup$
    – Young's Modulus
    Jan 2 at 13:25










  • $begingroup$
    Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
    $endgroup$
    – Ethan Bolker
    Jan 2 at 13:26








1




1




$begingroup$
Use induction on $n$.
$endgroup$
– Wuestenfux
Jan 2 at 13:24




$begingroup$
Use induction on $n$.
$endgroup$
– Wuestenfux
Jan 2 at 13:24












$begingroup$
Hint: $3/2=1+1/2$
$endgroup$
– Wojowu
Jan 2 at 13:25




$begingroup$
Hint: $3/2=1+1/2$
$endgroup$
– Wojowu
Jan 2 at 13:25












$begingroup$
Proof by induction isn't on my syllabus. How do i do it without it?
$endgroup$
– Young's Modulus
Jan 2 at 13:25




$begingroup$
Proof by induction isn't on my syllabus. How do i do it without it?
$endgroup$
– Young's Modulus
Jan 2 at 13:25












$begingroup$
Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
$endgroup$
– Ethan Bolker
Jan 2 at 13:26




$begingroup$
Hint ( a little more than @Wojowu ): Do you know how to expand $(1 + x)^n$?
$endgroup$
– Ethan Bolker
Jan 2 at 13:26










4 Answers
4






active

oldest

votes


















3












$begingroup$

$left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Take $x=1/2$ and $y=1$ in the expansion
    $$
    (x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
    $$






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      $$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
      Last equation follows from binomial theorem.






      share|cite|improve this answer









      $endgroup$









      • 1




        $begingroup$
        Right, Of course, I somehow managed to overthink this. Thanks.
        $endgroup$
        – Young's Modulus
        Jan 2 at 13:35



















      1












      $begingroup$

      There is a theorem (Binomial theorem, demostrable by induction) that shows you:
      begin{equation}
      (a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
      end{equation}

      Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
      $$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
      Proof:
      The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:



      $$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
      Then:
      begin{eqnarray*}
      (a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
      (a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
      (a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
      (a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
      (a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
      (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
      (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
      (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
      (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
      (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
      (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
      (a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
      end{eqnarray*}



      And now the theorem is demostrated by induction. Here is a video of the demonstration.






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059471%2fusing-the-binomial-expansion-to-show-sum-k-0n-n-choose-k-frac12k%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        4 Answers
        4






        active

        oldest

        votes








        4 Answers
        4






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        $left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$






        share|cite|improve this answer









        $endgroup$


















          3












          $begingroup$

          $left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$






          share|cite|improve this answer









          $endgroup$
















            3












            3








            3





            $begingroup$

            $left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$






            share|cite|improve this answer









            $endgroup$



            $left(dfrac{3}{2}right)^n= left(dfrac{1}{2}+1right)^n =sumlimits_{k=0}^ndbinom{n}{k}dfrac{1}{2^k}$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 2 at 13:30









            Martín Vacas VignoloMartín Vacas Vignolo

            3,811623




            3,811623























                2












                $begingroup$

                Take $x=1/2$ and $y=1$ in the expansion
                $$
                (x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
                $$






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Take $x=1/2$ and $y=1$ in the expansion
                  $$
                  (x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
                  $$






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Take $x=1/2$ and $y=1$ in the expansion
                    $$
                    (x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
                    $$






                    share|cite|improve this answer









                    $endgroup$



                    Take $x=1/2$ and $y=1$ in the expansion
                    $$
                    (x+y)^n= sum_{k=0}^n binom{n}{k}x^k y^{n-k}.
                    $$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 2 at 13:27









                    BerkheimerBerkheimer

                    1,437924




                    1,437924























                        2












                        $begingroup$

                        $$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
                        Last equation follows from binomial theorem.






                        share|cite|improve this answer









                        $endgroup$









                        • 1




                          $begingroup$
                          Right, Of course, I somehow managed to overthink this. Thanks.
                          $endgroup$
                          – Young's Modulus
                          Jan 2 at 13:35
















                        2












                        $begingroup$

                        $$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
                        Last equation follows from binomial theorem.






                        share|cite|improve this answer









                        $endgroup$









                        • 1




                          $begingroup$
                          Right, Of course, I somehow managed to overthink this. Thanks.
                          $endgroup$
                          – Young's Modulus
                          Jan 2 at 13:35














                        2












                        2








                        2





                        $begingroup$

                        $$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
                        Last equation follows from binomial theorem.






                        share|cite|improve this answer









                        $endgroup$



                        $$(3/2)^n=(1+1/2)^n=sum_{k=0}^n {n choose k} frac{1}{2^k}.$$
                        Last equation follows from binomial theorem.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Jan 2 at 13:29









                        Thomas ShelbyThomas Shelby

                        2,119220




                        2,119220








                        • 1




                          $begingroup$
                          Right, Of course, I somehow managed to overthink this. Thanks.
                          $endgroup$
                          – Young's Modulus
                          Jan 2 at 13:35














                        • 1




                          $begingroup$
                          Right, Of course, I somehow managed to overthink this. Thanks.
                          $endgroup$
                          – Young's Modulus
                          Jan 2 at 13:35








                        1




                        1




                        $begingroup$
                        Right, Of course, I somehow managed to overthink this. Thanks.
                        $endgroup$
                        – Young's Modulus
                        Jan 2 at 13:35




                        $begingroup$
                        Right, Of course, I somehow managed to overthink this. Thanks.
                        $endgroup$
                        – Young's Modulus
                        Jan 2 at 13:35











                        1












                        $begingroup$

                        There is a theorem (Binomial theorem, demostrable by induction) that shows you:
                        begin{equation}
                        (a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
                        end{equation}

                        Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
                        $$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
                        Proof:
                        The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:



                        $$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
                        Then:
                        begin{eqnarray*}
                        (a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
                        (a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
                        (a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
                        (a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
                        (a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
                        (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
                        (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
                        (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
                        (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
                        (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
                        (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
                        (a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
                        end{eqnarray*}



                        And now the theorem is demostrated by induction. Here is a video of the demonstration.






                        share|cite|improve this answer











                        $endgroup$


















                          1












                          $begingroup$

                          There is a theorem (Binomial theorem, demostrable by induction) that shows you:
                          begin{equation}
                          (a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
                          end{equation}

                          Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
                          $$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
                          Proof:
                          The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:



                          $$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
                          Then:
                          begin{eqnarray*}
                          (a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
                          (a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
                          (a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
                          (a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
                          (a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
                          (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
                          (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
                          (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
                          (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
                          (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
                          (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
                          (a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
                          end{eqnarray*}



                          And now the theorem is demostrated by induction. Here is a video of the demonstration.






                          share|cite|improve this answer











                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            There is a theorem (Binomial theorem, demostrable by induction) that shows you:
                            begin{equation}
                            (a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
                            end{equation}

                            Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
                            $$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
                            Proof:
                            The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:



                            $$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
                            Then:
                            begin{eqnarray*}
                            (a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
                            (a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
                            (a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
                            (a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
                            (a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
                            (a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
                            end{eqnarray*}



                            And now the theorem is demostrated by induction. Here is a video of the demonstration.






                            share|cite|improve this answer











                            $endgroup$



                            There is a theorem (Binomial theorem, demostrable by induction) that shows you:
                            begin{equation}
                            (a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}
                            end{equation}

                            Then if you use the $displaystyle a=frac{1}{2}$ and $b=1$, you obtain:
                            $$sum_{k=0}^n binom{n}{k} frac{1}{2^k} = (3/2)^n$$
                            Proof:
                            The demostration of the Binomial Theorem is not complicated, the case $n=1$ is obviously true, then if we assume the case $n$, and we came to prove the case $n+1$ and the theorem is proven. If:



                            $$(a+b)^n = sum_{k=0}^n binom{n}{k} a^k b^{n-k}$$
                            Then:
                            begin{eqnarray*}
                            (a+b)^{n+1} &=& (a+b)(a+b)^{n} = a(a+b)^{n} + b(a+b)^{n} \
                            (a+b)^{n+1} &=& asum_{k=0}^n binom{n}{k} a^k b^{n-k} + bsum_{k=0}^n binom{n}{k} a^k b^{n-k} \
                            (a+b)^{n+1} &=& sum_{k=0}^n binom{n}{k} a^{k+1} b^{n-k} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
                            (a+b)^{n+1} &=& sum_{k=1}^{n+1} binom{n}{k-1} a^{k} b^{n-k+1} + sum_{k=0}^n binom{n}{k} a^k b^{n-k+1} \
                            (a+b)^{n+1} &=& left[a^{n+1} + sum_{k=1}^{n} binom{n}{k-1} a^{k} b^{n-k+1} right] + left[b^{n+1} +sum_{k=1}^n binom{n}{k} a^k b^{n-k+1} right] \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ binom{n}{k-1} + binom{n}{k}right]right) \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!}{(k-1)!(n-k+1)!} + frac{n!}{k!(n-k)!}right]right) \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!k}{k!(n-k+1)!} + frac{n!(n-k+1)}{k!(n-k+1)!}right]right) \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left(a^k b^{n-k+1}left[ frac{n!(n+1)}{k!(n-k+1)!}right]right) \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}left[a^k b^{n-k+1} frac{(n+1)!}{k!(n+1-k)!}right] \
                            (a+b)^{n+1} &=& a^{n+1} + b^{n+1} + sum_{k=1}^{n}binom{n+1}{k}a^k b^{n+1-k} \
                            (a+b)^{n+1} &=& sum_{k=0}^{n+1}binom{n+1}{k}a^k b^{n+1-k} \
                            end{eqnarray*}



                            And now the theorem is demostrated by induction. Here is a video of the demonstration.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Jan 10 at 0:18

























                            answered Jan 2 at 13:31









                            El PastaEl Pasta

                            34515




                            34515






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059471%2fusing-the-binomial-expansion-to-show-sum-k-0n-n-choose-k-frac12k%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                How to fix TextFormField cause rebuild widget in Flutter