Using the fact this equation is equidimensional. Calculate all associated eigenvalues.
$begingroup$
Let
$$x^2y''+xy'+lambda y=0,,,,,,y(1)=0,,,y(b)=0tag1$$
Using the fact this equation is equidimensional. Calculate all associated eigenvalues.
Is $lambda=0$ an eigenvalue?
Prove there exist infinite eigenvalues with one minimum, but there doesn't exist a maximum eigenvalue.
My attempt:
Note the equation $(1)$ is a Cauchy-Euler equation.
Suppose $y=x^r$ then $y'=r x^{r-1}$, $y''=r(r-1)x^{r-2}$.
Then
$$x^2r(r-1)x^{r-2}+xr x^{r-1}+r x^r=0implies(r^2-r)x^r=0iff r_1=0,,,, r_2=-1$$
Then the solution for the ODE is:
$$y(x)=C_1+C_2x^{-1}$$
Here I'm a little confused, to solve my problem. Can someone help me?
pde
$endgroup$
add a comment |
$begingroup$
Let
$$x^2y''+xy'+lambda y=0,,,,,,y(1)=0,,,y(b)=0tag1$$
Using the fact this equation is equidimensional. Calculate all associated eigenvalues.
Is $lambda=0$ an eigenvalue?
Prove there exist infinite eigenvalues with one minimum, but there doesn't exist a maximum eigenvalue.
My attempt:
Note the equation $(1)$ is a Cauchy-Euler equation.
Suppose $y=x^r$ then $y'=r x^{r-1}$, $y''=r(r-1)x^{r-2}$.
Then
$$x^2r(r-1)x^{r-2}+xr x^{r-1}+r x^r=0implies(r^2-r)x^r=0iff r_1=0,,,, r_2=-1$$
Then the solution for the ODE is:
$$y(x)=C_1+C_2x^{-1}$$
Here I'm a little confused, to solve my problem. Can someone help me?
pde
$endgroup$
1
$begingroup$
Don't use $x^lambda$, use $x^r$ where $r$ is to be determined (it won't be $lambda$).
$endgroup$
– Robert Israel
Jan 2 at 18:54
1
$begingroup$
Ok, i go to edit that @RobertIsrael
$endgroup$
– Bvss12
Jan 2 at 18:59
1
$begingroup$
Using $lambda$ for the power was the source of your confusion. The equation should be $r^2+lambda=0$
$endgroup$
– Dylan
Jan 2 at 19:17
$begingroup$
Ummm, yes you have reason. I go to solve that and update my question. @Dylan
$endgroup$
– Bvss12
Jan 2 at 19:19
add a comment |
$begingroup$
Let
$$x^2y''+xy'+lambda y=0,,,,,,y(1)=0,,,y(b)=0tag1$$
Using the fact this equation is equidimensional. Calculate all associated eigenvalues.
Is $lambda=0$ an eigenvalue?
Prove there exist infinite eigenvalues with one minimum, but there doesn't exist a maximum eigenvalue.
My attempt:
Note the equation $(1)$ is a Cauchy-Euler equation.
Suppose $y=x^r$ then $y'=r x^{r-1}$, $y''=r(r-1)x^{r-2}$.
Then
$$x^2r(r-1)x^{r-2}+xr x^{r-1}+r x^r=0implies(r^2-r)x^r=0iff r_1=0,,,, r_2=-1$$
Then the solution for the ODE is:
$$y(x)=C_1+C_2x^{-1}$$
Here I'm a little confused, to solve my problem. Can someone help me?
pde
$endgroup$
Let
$$x^2y''+xy'+lambda y=0,,,,,,y(1)=0,,,y(b)=0tag1$$
Using the fact this equation is equidimensional. Calculate all associated eigenvalues.
Is $lambda=0$ an eigenvalue?
Prove there exist infinite eigenvalues with one minimum, but there doesn't exist a maximum eigenvalue.
My attempt:
Note the equation $(1)$ is a Cauchy-Euler equation.
Suppose $y=x^r$ then $y'=r x^{r-1}$, $y''=r(r-1)x^{r-2}$.
Then
$$x^2r(r-1)x^{r-2}+xr x^{r-1}+r x^r=0implies(r^2-r)x^r=0iff r_1=0,,,, r_2=-1$$
Then the solution for the ODE is:
$$y(x)=C_1+C_2x^{-1}$$
Here I'm a little confused, to solve my problem. Can someone help me?
pde
pde
edited Jan 2 at 19:03
Bernard
119k639112
119k639112
asked Jan 2 at 18:44


Bvss12Bvss12
1,785618
1,785618
1
$begingroup$
Don't use $x^lambda$, use $x^r$ where $r$ is to be determined (it won't be $lambda$).
$endgroup$
– Robert Israel
Jan 2 at 18:54
1
$begingroup$
Ok, i go to edit that @RobertIsrael
$endgroup$
– Bvss12
Jan 2 at 18:59
1
$begingroup$
Using $lambda$ for the power was the source of your confusion. The equation should be $r^2+lambda=0$
$endgroup$
– Dylan
Jan 2 at 19:17
$begingroup$
Ummm, yes you have reason. I go to solve that and update my question. @Dylan
$endgroup$
– Bvss12
Jan 2 at 19:19
add a comment |
1
$begingroup$
Don't use $x^lambda$, use $x^r$ where $r$ is to be determined (it won't be $lambda$).
$endgroup$
– Robert Israel
Jan 2 at 18:54
1
$begingroup$
Ok, i go to edit that @RobertIsrael
$endgroup$
– Bvss12
Jan 2 at 18:59
1
$begingroup$
Using $lambda$ for the power was the source of your confusion. The equation should be $r^2+lambda=0$
$endgroup$
– Dylan
Jan 2 at 19:17
$begingroup$
Ummm, yes you have reason. I go to solve that and update my question. @Dylan
$endgroup$
– Bvss12
Jan 2 at 19:19
1
1
$begingroup$
Don't use $x^lambda$, use $x^r$ where $r$ is to be determined (it won't be $lambda$).
$endgroup$
– Robert Israel
Jan 2 at 18:54
$begingroup$
Don't use $x^lambda$, use $x^r$ where $r$ is to be determined (it won't be $lambda$).
$endgroup$
– Robert Israel
Jan 2 at 18:54
1
1
$begingroup$
Ok, i go to edit that @RobertIsrael
$endgroup$
– Bvss12
Jan 2 at 18:59
$begingroup$
Ok, i go to edit that @RobertIsrael
$endgroup$
– Bvss12
Jan 2 at 18:59
1
1
$begingroup$
Using $lambda$ for the power was the source of your confusion. The equation should be $r^2+lambda=0$
$endgroup$
– Dylan
Jan 2 at 19:17
$begingroup$
Using $lambda$ for the power was the source of your confusion. The equation should be $r^2+lambda=0$
$endgroup$
– Dylan
Jan 2 at 19:17
$begingroup$
Ummm, yes you have reason. I go to solve that and update my question. @Dylan
$endgroup$
– Bvss12
Jan 2 at 19:19
$begingroup$
Ummm, yes you have reason. I go to solve that and update my question. @Dylan
$endgroup$
– Bvss12
Jan 2 at 19:19
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Considering
$$
left(x^2frac{d^2}{dt^2}+xfrac{d}{dt}+lambdaright)y = 0
$$
after the substitution $y = x^r$ we get
$$
x^rleft(r(r-1)+r +lambdaright)=0
$$
then
$$
r = pm i sqrtlambda
$$
then for $lambda > 0$ we have
$$
y = C_1sin(sqrtlambda ln x) + C_2cos(sqrtlambda ln x)
$$
and now from the boundary conditions
$$
y(1) = C_2 = 0\
y(b) = C_1sin(sqrtlambda ln b) = 0
$$
then we conclude
$$
sqrtlambdaln b = k piRightarrow lambda_ k = frac{pi^2}{ln^2 b}k^2
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059816%2fusing-the-fact-this-equation-is-equidimensional-calculate-all-associated-eigenv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Considering
$$
left(x^2frac{d^2}{dt^2}+xfrac{d}{dt}+lambdaright)y = 0
$$
after the substitution $y = x^r$ we get
$$
x^rleft(r(r-1)+r +lambdaright)=0
$$
then
$$
r = pm i sqrtlambda
$$
then for $lambda > 0$ we have
$$
y = C_1sin(sqrtlambda ln x) + C_2cos(sqrtlambda ln x)
$$
and now from the boundary conditions
$$
y(1) = C_2 = 0\
y(b) = C_1sin(sqrtlambda ln b) = 0
$$
then we conclude
$$
sqrtlambdaln b = k piRightarrow lambda_ k = frac{pi^2}{ln^2 b}k^2
$$
$endgroup$
add a comment |
$begingroup$
Considering
$$
left(x^2frac{d^2}{dt^2}+xfrac{d}{dt}+lambdaright)y = 0
$$
after the substitution $y = x^r$ we get
$$
x^rleft(r(r-1)+r +lambdaright)=0
$$
then
$$
r = pm i sqrtlambda
$$
then for $lambda > 0$ we have
$$
y = C_1sin(sqrtlambda ln x) + C_2cos(sqrtlambda ln x)
$$
and now from the boundary conditions
$$
y(1) = C_2 = 0\
y(b) = C_1sin(sqrtlambda ln b) = 0
$$
then we conclude
$$
sqrtlambdaln b = k piRightarrow lambda_ k = frac{pi^2}{ln^2 b}k^2
$$
$endgroup$
add a comment |
$begingroup$
Considering
$$
left(x^2frac{d^2}{dt^2}+xfrac{d}{dt}+lambdaright)y = 0
$$
after the substitution $y = x^r$ we get
$$
x^rleft(r(r-1)+r +lambdaright)=0
$$
then
$$
r = pm i sqrtlambda
$$
then for $lambda > 0$ we have
$$
y = C_1sin(sqrtlambda ln x) + C_2cos(sqrtlambda ln x)
$$
and now from the boundary conditions
$$
y(1) = C_2 = 0\
y(b) = C_1sin(sqrtlambda ln b) = 0
$$
then we conclude
$$
sqrtlambdaln b = k piRightarrow lambda_ k = frac{pi^2}{ln^2 b}k^2
$$
$endgroup$
Considering
$$
left(x^2frac{d^2}{dt^2}+xfrac{d}{dt}+lambdaright)y = 0
$$
after the substitution $y = x^r$ we get
$$
x^rleft(r(r-1)+r +lambdaright)=0
$$
then
$$
r = pm i sqrtlambda
$$
then for $lambda > 0$ we have
$$
y = C_1sin(sqrtlambda ln x) + C_2cos(sqrtlambda ln x)
$$
and now from the boundary conditions
$$
y(1) = C_2 = 0\
y(b) = C_1sin(sqrtlambda ln b) = 0
$$
then we conclude
$$
sqrtlambdaln b = k piRightarrow lambda_ k = frac{pi^2}{ln^2 b}k^2
$$
answered Jan 2 at 19:23
CesareoCesareo
8,5043516
8,5043516
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059816%2fusing-the-fact-this-equation-is-equidimensional-calculate-all-associated-eigenv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Don't use $x^lambda$, use $x^r$ where $r$ is to be determined (it won't be $lambda$).
$endgroup$
– Robert Israel
Jan 2 at 18:54
1
$begingroup$
Ok, i go to edit that @RobertIsrael
$endgroup$
– Bvss12
Jan 2 at 18:59
1
$begingroup$
Using $lambda$ for the power was the source of your confusion. The equation should be $r^2+lambda=0$
$endgroup$
– Dylan
Jan 2 at 19:17
$begingroup$
Ummm, yes you have reason. I go to solve that and update my question. @Dylan
$endgroup$
– Bvss12
Jan 2 at 19:19