Why is $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$ and not $1$?
$begingroup$
I've been practicing horizontal asymptotes and I came across a problem that I do not understand.
I understood why $lim_{x rightarrow infty}frac{x - 2}{sqrt{x^2 + 1}} = 1$, but i couldn't understand why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} $ isn't $1$ as well, but $-1$ ?
When I calculated $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} $ in wolfram alpha, the result was $-1$.
If anyone could explain why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} = -1$ or $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$
I'd appreate it very much!
limits
$endgroup$
add a comment |
$begingroup$
I've been practicing horizontal asymptotes and I came across a problem that I do not understand.
I understood why $lim_{x rightarrow infty}frac{x - 2}{sqrt{x^2 + 1}} = 1$, but i couldn't understand why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} $ isn't $1$ as well, but $-1$ ?
When I calculated $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} $ in wolfram alpha, the result was $-1$.
If anyone could explain why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} = -1$ or $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$
I'd appreate it very much!
limits
$endgroup$
1
$begingroup$
$sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
$endgroup$
– tilper
Jan 2 at 15:12
$begingroup$
A plot on Wolfram Alpha demonstrates it quickly ...
$endgroup$
– Martin R
Jan 2 at 15:16
add a comment |
$begingroup$
I've been practicing horizontal asymptotes and I came across a problem that I do not understand.
I understood why $lim_{x rightarrow infty}frac{x - 2}{sqrt{x^2 + 1}} = 1$, but i couldn't understand why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} $ isn't $1$ as well, but $-1$ ?
When I calculated $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} $ in wolfram alpha, the result was $-1$.
If anyone could explain why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} = -1$ or $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$
I'd appreate it very much!
limits
$endgroup$
I've been practicing horizontal asymptotes and I came across a problem that I do not understand.
I understood why $lim_{x rightarrow infty}frac{x - 2}{sqrt{x^2 + 1}} = 1$, but i couldn't understand why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} $ isn't $1$ as well, but $-1$ ?
When I calculated $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} $ in wolfram alpha, the result was $-1$.
If anyone could explain why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} = -1$ or $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$
I'd appreate it very much!
limits
limits
asked Jan 2 at 15:10
galaxyworksgalaxyworks
154
154
1
$begingroup$
$sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
$endgroup$
– tilper
Jan 2 at 15:12
$begingroup$
A plot on Wolfram Alpha demonstrates it quickly ...
$endgroup$
– Martin R
Jan 2 at 15:16
add a comment |
1
$begingroup$
$sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
$endgroup$
– tilper
Jan 2 at 15:12
$begingroup$
A plot on Wolfram Alpha demonstrates it quickly ...
$endgroup$
– Martin R
Jan 2 at 15:16
1
1
$begingroup$
$sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
$endgroup$
– tilper
Jan 2 at 15:12
$begingroup$
$sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
$endgroup$
– tilper
Jan 2 at 15:12
$begingroup$
A plot on Wolfram Alpha demonstrates it quickly ...
$endgroup$
– Martin R
Jan 2 at 15:16
$begingroup$
A plot on Wolfram Alpha demonstrates it quickly ...
$endgroup$
– Martin R
Jan 2 at 15:16
add a comment |
8 Answers
8
active
oldest
votes
$begingroup$
If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.
$endgroup$
add a comment |
$begingroup$
Note that
$$sqrt{x^2} = vert xvert$$
so the following holds for negative values of $x$:
$$sqrt{x^2} = -x; quad x < 0$$
Hence, you get
$$frac{x}{-x} = -1$$
$endgroup$
add a comment |
$begingroup$
Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$
lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
$$
$endgroup$
add a comment |
$begingroup$
The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
$$
frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
$$
$endgroup$
add a comment |
$begingroup$
The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.
Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.
Keeping that in mind the issue should resolve itself.
It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.
$endgroup$
add a comment |
$begingroup$
Set $y=-x$, where $y>0$(why?).
$-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$
$endgroup$
add a comment |
$begingroup$
Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
begin{eqnarray}
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
end{eqnarray}
And:
begin{eqnarray}
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
end{eqnarray}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059572%2fwhy-is-lim-x-rightarrow-infty-fracx-sqrtx2-1-and-not-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
8 Answers
8
active
oldest
votes
8 Answers
8
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.
$endgroup$
add a comment |
$begingroup$
If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.
$endgroup$
add a comment |
$begingroup$
If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.
$endgroup$
If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.
answered Jan 2 at 15:12


Tsemo AristideTsemo Aristide
56.7k11444
56.7k11444
add a comment |
add a comment |
$begingroup$
Note that
$$sqrt{x^2} = vert xvert$$
so the following holds for negative values of $x$:
$$sqrt{x^2} = -x; quad x < 0$$
Hence, you get
$$frac{x}{-x} = -1$$
$endgroup$
add a comment |
$begingroup$
Note that
$$sqrt{x^2} = vert xvert$$
so the following holds for negative values of $x$:
$$sqrt{x^2} = -x; quad x < 0$$
Hence, you get
$$frac{x}{-x} = -1$$
$endgroup$
add a comment |
$begingroup$
Note that
$$sqrt{x^2} = vert xvert$$
so the following holds for negative values of $x$:
$$sqrt{x^2} = -x; quad x < 0$$
Hence, you get
$$frac{x}{-x} = -1$$
$endgroup$
Note that
$$sqrt{x^2} = vert xvert$$
so the following holds for negative values of $x$:
$$sqrt{x^2} = -x; quad x < 0$$
Hence, you get
$$frac{x}{-x} = -1$$
answered Jan 2 at 15:13
KM101KM101
5,9361523
5,9361523
add a comment |
add a comment |
$begingroup$
Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$
$endgroup$
add a comment |
$begingroup$
Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$
$endgroup$
add a comment |
$begingroup$
Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$
$endgroup$
Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$
answered Jan 2 at 15:12


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
73.6k42864
73.6k42864
add a comment |
add a comment |
$begingroup$
Hint:
$$
lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$
lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$
lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
$$
$endgroup$
Hint:
$$
lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
$$
answered Jan 2 at 15:12


lhflhf
163k10168390
163k10168390
add a comment |
add a comment |
$begingroup$
The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
$$
frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
$$
$endgroup$
add a comment |
$begingroup$
The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
$$
frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
$$
$endgroup$
add a comment |
$begingroup$
The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
$$
frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
$$
$endgroup$
The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
$$
frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
$$
answered Jan 2 at 15:14
Ethan BolkerEthan Bolker
42.1k548111
42.1k548111
add a comment |
add a comment |
$begingroup$
The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.
Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.
Keeping that in mind the issue should resolve itself.
It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.
$endgroup$
add a comment |
$begingroup$
The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.
Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.
Keeping that in mind the issue should resolve itself.
It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.
$endgroup$
add a comment |
$begingroup$
The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.
Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.
Keeping that in mind the issue should resolve itself.
It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.
$endgroup$
The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.
Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.
Keeping that in mind the issue should resolve itself.
It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.
answered Jan 2 at 15:20
quid♦quid
36.9k95093
36.9k95093
add a comment |
add a comment |
$begingroup$
Set $y=-x$, where $y>0$(why?).
$-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$
$endgroup$
add a comment |
$begingroup$
Set $y=-x$, where $y>0$(why?).
$-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$
$endgroup$
add a comment |
$begingroup$
Set $y=-x$, where $y>0$(why?).
$-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$
$endgroup$
Set $y=-x$, where $y>0$(why?).
$-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$
answered Jan 2 at 15:22
Peter SzilasPeter Szilas
10.9k2720
10.9k2720
add a comment |
add a comment |
$begingroup$
Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
begin{eqnarray}
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
end{eqnarray}
And:
begin{eqnarray}
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
end{eqnarray}
$endgroup$
add a comment |
$begingroup$
Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
begin{eqnarray}
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
end{eqnarray}
And:
begin{eqnarray}
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
end{eqnarray}
$endgroup$
add a comment |
$begingroup$
Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
begin{eqnarray}
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
end{eqnarray}
And:
begin{eqnarray}
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
end{eqnarray}
$endgroup$
Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
begin{eqnarray}
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
end{eqnarray}
And:
begin{eqnarray}
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
end{eqnarray}
edited Jan 2 at 15:27
answered Jan 2 at 15:20
El PastaEl Pasta
34515
34515
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059572%2fwhy-is-lim-x-rightarrow-infty-fracx-sqrtx2-1-and-not-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
$endgroup$
– tilper
Jan 2 at 15:12
$begingroup$
A plot on Wolfram Alpha demonstrates it quickly ...
$endgroup$
– Martin R
Jan 2 at 15:16