Why is $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$ and not $1$?












0












$begingroup$


I've been practicing horizontal asymptotes and I came across a problem that I do not understand.



I understood why $lim_{x rightarrow infty}frac{x - 2}{sqrt{x^2 + 1}} = 1$, but i couldn't understand why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} $ isn't $1$ as well, but $-1$ ?



When I calculated $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} $ in wolfram alpha, the result was $-1$.



If anyone could explain why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} = -1$ or $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$
I'd appreate it very much!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    $sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
    $endgroup$
    – tilper
    Jan 2 at 15:12










  • $begingroup$
    A plot on Wolfram Alpha demonstrates it quickly ...
    $endgroup$
    – Martin R
    Jan 2 at 15:16
















0












$begingroup$


I've been practicing horizontal asymptotes and I came across a problem that I do not understand.



I understood why $lim_{x rightarrow infty}frac{x - 2}{sqrt{x^2 + 1}} = 1$, but i couldn't understand why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} $ isn't $1$ as well, but $-1$ ?



When I calculated $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} $ in wolfram alpha, the result was $-1$.



If anyone could explain why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} = -1$ or $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$
I'd appreate it very much!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    $sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
    $endgroup$
    – tilper
    Jan 2 at 15:12










  • $begingroup$
    A plot on Wolfram Alpha demonstrates it quickly ...
    $endgroup$
    – Martin R
    Jan 2 at 15:16














0












0








0





$begingroup$


I've been practicing horizontal asymptotes and I came across a problem that I do not understand.



I understood why $lim_{x rightarrow infty}frac{x - 2}{sqrt{x^2 + 1}} = 1$, but i couldn't understand why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} $ isn't $1$ as well, but $-1$ ?



When I calculated $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} $ in wolfram alpha, the result was $-1$.



If anyone could explain why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} = -1$ or $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$
I'd appreate it very much!










share|cite|improve this question









$endgroup$




I've been practicing horizontal asymptotes and I came across a problem that I do not understand.



I understood why $lim_{x rightarrow infty}frac{x - 2}{sqrt{x^2 + 1}} = 1$, but i couldn't understand why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} $ isn't $1$ as well, but $-1$ ?



When I calculated $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} $ in wolfram alpha, the result was $-1$.



If anyone could explain why $lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} = -1$ or $lim_{x rightarrow -infty}frac{x}{sqrt{x^2}} = -1$
I'd appreate it very much!







limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 2 at 15:10









galaxyworksgalaxyworks

154




154








  • 1




    $begingroup$
    $sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
    $endgroup$
    – tilper
    Jan 2 at 15:12










  • $begingroup$
    A plot on Wolfram Alpha demonstrates it quickly ...
    $endgroup$
    – Martin R
    Jan 2 at 15:16














  • 1




    $begingroup$
    $sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
    $endgroup$
    – tilper
    Jan 2 at 15:12










  • $begingroup$
    A plot on Wolfram Alpha demonstrates it quickly ...
    $endgroup$
    – Martin R
    Jan 2 at 15:16








1




1




$begingroup$
$sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
$endgroup$
– tilper
Jan 2 at 15:12




$begingroup$
$sqrt{x^2} = |x|$. when $x < 0$, $x / |x|$ is also negative.
$endgroup$
– tilper
Jan 2 at 15:12












$begingroup$
A plot on Wolfram Alpha demonstrates it quickly ...
$endgroup$
– Martin R
Jan 2 at 15:16




$begingroup$
A plot on Wolfram Alpha demonstrates it quickly ...
$endgroup$
– Martin R
Jan 2 at 15:16










8 Answers
8






active

oldest

votes


















4












$begingroup$

If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Note that



    $$sqrt{x^2} = vert xvert$$



    so the following holds for negative values of $x$:



    $$sqrt{x^2} = -x; quad x < 0$$



    Hence, you get



    $$frac{x}{-x} = -1$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$






      share|cite|improve this answer









      $endgroup$





















        1












        $begingroup$

        Hint:
        $$
        lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
        lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
        $$






        share|cite|improve this answer









        $endgroup$





















          1












          $begingroup$

          The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
          $$
          frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
          $$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
            The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.



            Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.



            Keeping that in mind the issue should resolve itself.



            It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              Set $y=-x$, where $y>0$(why?).



              $-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
                begin{eqnarray}
                lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
                lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
                lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
                lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
                end{eqnarray}

                And:
                begin{eqnarray}
                lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
                lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
                lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
                lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
                end{eqnarray}






                share|cite|improve this answer











                $endgroup$













                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059572%2fwhy-is-lim-x-rightarrow-infty-fracx-sqrtx2-1-and-not-1%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  8 Answers
                  8






                  active

                  oldest

                  votes








                  8 Answers
                  8






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  4












                  $begingroup$

                  If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.






                  share|cite|improve this answer









                  $endgroup$


















                    4












                    $begingroup$

                    If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.






                    share|cite|improve this answer









                    $endgroup$
















                      4












                      4








                      4





                      $begingroup$

                      If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.






                      share|cite|improve this answer









                      $endgroup$



                      If $x<0, |x|=-x $ so ${xover{sqrt{x^2}}}$ is ${xover{|x|}}={xover{-x}}=-1$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 2 at 15:12









                      Tsemo AristideTsemo Aristide

                      56.7k11444




                      56.7k11444























                          2












                          $begingroup$

                          Note that



                          $$sqrt{x^2} = vert xvert$$



                          so the following holds for negative values of $x$:



                          $$sqrt{x^2} = -x; quad x < 0$$



                          Hence, you get



                          $$frac{x}{-x} = -1$$






                          share|cite|improve this answer









                          $endgroup$


















                            2












                            $begingroup$

                            Note that



                            $$sqrt{x^2} = vert xvert$$



                            so the following holds for negative values of $x$:



                            $$sqrt{x^2} = -x; quad x < 0$$



                            Hence, you get



                            $$frac{x}{-x} = -1$$






                            share|cite|improve this answer









                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              Note that



                              $$sqrt{x^2} = vert xvert$$



                              so the following holds for negative values of $x$:



                              $$sqrt{x^2} = -x; quad x < 0$$



                              Hence, you get



                              $$frac{x}{-x} = -1$$






                              share|cite|improve this answer









                              $endgroup$



                              Note that



                              $$sqrt{x^2} = vert xvert$$



                              so the following holds for negative values of $x$:



                              $$sqrt{x^2} = -x; quad x < 0$$



                              Hence, you get



                              $$frac{x}{-x} = -1$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 2 at 15:13









                              KM101KM101

                              5,9361523




                              5,9361523























                                  1












                                  $begingroup$

                                  Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$






                                      share|cite|improve this answer









                                      $endgroup$



                                      Hint: Use that $$frac{x}{sqrt{x^2}}=frac{x}{|x|}$$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 2 at 15:12









                                      Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                                      73.6k42864




                                      73.6k42864























                                          1












                                          $begingroup$

                                          Hint:
                                          $$
                                          lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
                                          lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
                                          $$






                                          share|cite|improve this answer









                                          $endgroup$


















                                            1












                                            $begingroup$

                                            Hint:
                                            $$
                                            lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
                                            lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
                                            $$






                                            share|cite|improve this answer









                                            $endgroup$
















                                              1












                                              1








                                              1





                                              $begingroup$

                                              Hint:
                                              $$
                                              lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
                                              lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
                                              $$






                                              share|cite|improve this answer









                                              $endgroup$



                                              Hint:
                                              $$
                                              lim_{x rightarrow -infty}frac{x - 2}{sqrt{x^2 + 1}} =
                                              lim_{y rightarrow infty}frac{-y - 2}{sqrt{(-y)^2 + 1}} = -1
                                              $$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Jan 2 at 15:12









                                              lhflhf

                                              163k10168390




                                              163k10168390























                                                  1












                                                  $begingroup$

                                                  The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
                                                  $$
                                                  frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
                                                  $$






                                                  share|cite|improve this answer









                                                  $endgroup$


















                                                    1












                                                    $begingroup$

                                                    The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
                                                    $$
                                                    frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
                                                    $$






                                                    share|cite|improve this answer









                                                    $endgroup$
















                                                      1












                                                      1








                                                      1





                                                      $begingroup$

                                                      The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
                                                      $$
                                                      frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
                                                      $$






                                                      share|cite|improve this answer









                                                      $endgroup$



                                                      The answer really has nothing to do with limits or asymptotes. The real square root function always returns the nonnegative square root. So for every negative value of $x$
                                                      $$
                                                      frac{x}{sqrt{x^2}} = frac{x}{|x|} = -1 .
                                                      $$







                                                      share|cite|improve this answer












                                                      share|cite|improve this answer



                                                      share|cite|improve this answer










                                                      answered Jan 2 at 15:14









                                                      Ethan BolkerEthan Bolker

                                                      42.1k548111




                                                      42.1k548111























                                                          1












                                                          $begingroup$

                                                          The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
                                                          The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.



                                                          Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.



                                                          Keeping that in mind the issue should resolve itself.



                                                          It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.






                                                          share|cite|improve this answer









                                                          $endgroup$


















                                                            1












                                                            $begingroup$

                                                            The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
                                                            The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.



                                                            Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.



                                                            Keeping that in mind the issue should resolve itself.



                                                            It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.






                                                            share|cite|improve this answer









                                                            $endgroup$
















                                                              1












                                                              1








                                                              1





                                                              $begingroup$

                                                              The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
                                                              The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.



                                                              Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.



                                                              Keeping that in mind the issue should resolve itself.



                                                              It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.






                                                              share|cite|improve this answer









                                                              $endgroup$



                                                              The core issue is that $sqrt{x^2}$ does not simplify to $x$ for negative $x$.
                                                              The symbol $sqrt{r}$ for a nonnegative real number $r$ denotes the nonnegative root of $r$. This is not altered by the fact that in this case $r=x^2$ for some (negative) $x$.



                                                              Generally for a real number $x$ one has that $sqrt{x^2} = |x|$.



                                                              Keeping that in mind the issue should resolve itself.



                                                              It's also that phenomenon for $sqrt{x^2+1}$. When $x$ tends to $-infty$ this is not close to $x$ but rather close to $|x|$.







                                                              share|cite|improve this answer












                                                              share|cite|improve this answer



                                                              share|cite|improve this answer










                                                              answered Jan 2 at 15:20









                                                              quidquid

                                                              36.9k95093




                                                              36.9k95093























                                                                  0












                                                                  $begingroup$

                                                                  Set $y=-x$, where $y>0$(why?).



                                                                  $-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$






                                                                  share|cite|improve this answer









                                                                  $endgroup$


















                                                                    0












                                                                    $begingroup$

                                                                    Set $y=-x$, where $y>0$(why?).



                                                                    $-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$






                                                                    share|cite|improve this answer









                                                                    $endgroup$
















                                                                      0












                                                                      0








                                                                      0





                                                                      $begingroup$

                                                                      Set $y=-x$, where $y>0$(why?).



                                                                      $-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$






                                                                      share|cite|improve this answer









                                                                      $endgroup$



                                                                      Set $y=-x$, where $y>0$(why?).



                                                                      $-dfrac{y}{sqrt{y^2}} = - dfrac{y}{|y|}=-dfrac{y}{y}=-1.$







                                                                      share|cite|improve this answer












                                                                      share|cite|improve this answer



                                                                      share|cite|improve this answer










                                                                      answered Jan 2 at 15:22









                                                                      Peter SzilasPeter Szilas

                                                                      10.9k2720




                                                                      10.9k2720























                                                                          0












                                                                          $begingroup$

                                                                          Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
                                                                          begin{eqnarray}
                                                                          lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
                                                                          lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
                                                                          lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
                                                                          lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
                                                                          end{eqnarray}

                                                                          And:
                                                                          begin{eqnarray}
                                                                          lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
                                                                          lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
                                                                          lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
                                                                          lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
                                                                          end{eqnarray}






                                                                          share|cite|improve this answer











                                                                          $endgroup$


















                                                                            0












                                                                            $begingroup$

                                                                            Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
                                                                            begin{eqnarray}
                                                                            lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
                                                                            lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
                                                                            lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
                                                                            lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
                                                                            end{eqnarray}

                                                                            And:
                                                                            begin{eqnarray}
                                                                            lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
                                                                            lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
                                                                            lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
                                                                            lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
                                                                            end{eqnarray}






                                                                            share|cite|improve this answer











                                                                            $endgroup$
















                                                                              0












                                                                              0








                                                                              0





                                                                              $begingroup$

                                                                              Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
                                                                              begin{eqnarray}
                                                                              lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
                                                                              lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
                                                                              lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
                                                                              lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
                                                                              end{eqnarray}

                                                                              And:
                                                                              begin{eqnarray}
                                                                              lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
                                                                              lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
                                                                              lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
                                                                              lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
                                                                              end{eqnarray}






                                                                              share|cite|improve this answer











                                                                              $endgroup$



                                                                              Because when $xtoinfty^{+}$ $x$ tends to numbers positives and when $xtoinfty^{-}$ $x$ tends to numbers negatives. If you develop this:
                                                                              begin{eqnarray}
                                                                              lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{|x|} \
                                                                              lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}frac{x}{x} \
                                                                              lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{+}}1 \
                                                                              lim_{xtoinfty^{+}}frac{x}{sqrt{x^2}} &=& 1 \
                                                                              end{eqnarray}

                                                                              And:
                                                                              begin{eqnarray}
                                                                              lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{|x|} \
                                                                              lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}frac{x}{-x} \
                                                                              lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& lim_{xtoinfty^{-}}-1 \
                                                                              lim_{xtoinfty^{-}}frac{x}{sqrt{x^2}} &=& -1 \
                                                                              end{eqnarray}







                                                                              share|cite|improve this answer














                                                                              share|cite|improve this answer



                                                                              share|cite|improve this answer








                                                                              edited Jan 2 at 15:27

























                                                                              answered Jan 2 at 15:20









                                                                              El PastaEl Pasta

                                                                              34515




                                                                              34515






























                                                                                  draft saved

                                                                                  draft discarded




















































                                                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                                                  • Please be sure to answer the question. Provide details and share your research!

                                                                                  But avoid



                                                                                  • Asking for help, clarification, or responding to other answers.

                                                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                                                  Use MathJax to format equations. MathJax reference.


                                                                                  To learn more, see our tips on writing great answers.




                                                                                  draft saved


                                                                                  draft discarded














                                                                                  StackExchange.ready(
                                                                                  function () {
                                                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059572%2fwhy-is-lim-x-rightarrow-infty-fracx-sqrtx2-1-and-not-1%23new-answer', 'question_page');
                                                                                  }
                                                                                  );

                                                                                  Post as a guest















                                                                                  Required, but never shown





















































                                                                                  Required, but never shown














                                                                                  Required, but never shown












                                                                                  Required, but never shown







                                                                                  Required, but never shown

































                                                                                  Required, but never shown














                                                                                  Required, but never shown












                                                                                  Required, but never shown







                                                                                  Required, but never shown







                                                                                  Popular posts from this blog

                                                                                  MongoDB - Not Authorized To Execute Command

                                                                                  How to fix TextFormField cause rebuild widget in Flutter

                                                                                  in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith