Calculating DCT with DFT
$begingroup$
The discrete cosine transform is given by
(DCT($f$))$_j$= $sumlimits_{k=0}^{n-1}f_k cos(frac{pi}{2}(k+frac{1}{2})j)$
with reference points $x_k=frac{pi}{2n}(2k+1)$
How do we show that (DCT$(f))_j$=2n(DFT($hat{f}))_j$
where $hat{f}=(0,f_0,0,f_1,...,f_{n-1},0,f_{n-1},0,f_{n-2},...,0,f_1,0,f_0)$?
fourier-transform
$endgroup$
add a comment |
$begingroup$
The discrete cosine transform is given by
(DCT($f$))$_j$= $sumlimits_{k=0}^{n-1}f_k cos(frac{pi}{2}(k+frac{1}{2})j)$
with reference points $x_k=frac{pi}{2n}(2k+1)$
How do we show that (DCT$(f))_j$=2n(DFT($hat{f}))_j$
where $hat{f}=(0,f_0,0,f_1,...,f_{n-1},0,f_{n-1},0,f_{n-2},...,0,f_1,0,f_0)$?
fourier-transform
$endgroup$
add a comment |
$begingroup$
The discrete cosine transform is given by
(DCT($f$))$_j$= $sumlimits_{k=0}^{n-1}f_k cos(frac{pi}{2}(k+frac{1}{2})j)$
with reference points $x_k=frac{pi}{2n}(2k+1)$
How do we show that (DCT$(f))_j$=2n(DFT($hat{f}))_j$
where $hat{f}=(0,f_0,0,f_1,...,f_{n-1},0,f_{n-1},0,f_{n-2},...,0,f_1,0,f_0)$?
fourier-transform
$endgroup$
The discrete cosine transform is given by
(DCT($f$))$_j$= $sumlimits_{k=0}^{n-1}f_k cos(frac{pi}{2}(k+frac{1}{2})j)$
with reference points $x_k=frac{pi}{2n}(2k+1)$
How do we show that (DCT$(f))_j$=2n(DFT($hat{f}))_j$
where $hat{f}=(0,f_0,0,f_1,...,f_{n-1},0,f_{n-1},0,f_{n-2},...,0,f_1,0,f_0)$?
fourier-transform
fourier-transform
edited Jan 15 at 18:29
babemcnuggets
asked Jan 13 at 3:58
babemcnuggetsbabemcnuggets
1129
1129
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
After understanding better I came up with a solution myself.
The DFT($f$)$_j$ I am using is
DFT($f$)$_j = frac{1}{n}sumlimits_{k=0}^{n-1} f_k e^{-j2pifrac{1}{n}ki}$
So $2n$*DFT($hat{f}$)$_j$ = $2nfrac{1}{4n}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-j2pifrac{1}{4n}ki}$ = $frac{1}{2}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-jpifrac{1}{2n}ki}$.
Now we see that only the odd $hat{f}_k$ matter here so we rewrite it as:
$frac{1}{2}sumlimits_{k=0}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$ = $frac{1}{2}(sumlimits_{k=0}^{n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i})$
Let $f=(f_0,f_1...,f_{n-1})$. We see that we can replace $hat{f}_{2k+1}$ in the first sum with $f_k$. We then want the other sum to also "be" $f$ and let the second sum run from the end to the start meaning :
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2(2n-1-k)+1} e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$
We can't put those two sums together yet, so we substitute $m=2n-1-k$ which means $k=2n-1-m$ and brings us to:
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{m=0}^{n-1} hat{f}_{2m+1} e^{-jpifrac{1}{2n}(2m+1)i})$
Finally we have that for identical $m$ and $k$ that $f_k = hat{f}_2m+1$ and we take the two sums together:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$=$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(4n-2k+1)i})$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-j2pi}e^{jpifrac{1}{2n} (2k+1)i)}$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{jpifrac{1}{2n} (2k+1)i)}$
Now remember that $cos(x)=frac{1}{2}(e^{ix}+e^{-ix})$ or $2cos(x)=(e^{ix}+e^{-ix})$. Concluding you have:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k 2cos(frac{pi}{2}(2k+1)j)$=$sumlimits_{k=0}^{n-1} f_k cos(pi(k+frac{1}{2})j)$ which had to be shown.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071692%2fcalculating-dct-with-dft%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
After understanding better I came up with a solution myself.
The DFT($f$)$_j$ I am using is
DFT($f$)$_j = frac{1}{n}sumlimits_{k=0}^{n-1} f_k e^{-j2pifrac{1}{n}ki}$
So $2n$*DFT($hat{f}$)$_j$ = $2nfrac{1}{4n}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-j2pifrac{1}{4n}ki}$ = $frac{1}{2}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-jpifrac{1}{2n}ki}$.
Now we see that only the odd $hat{f}_k$ matter here so we rewrite it as:
$frac{1}{2}sumlimits_{k=0}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$ = $frac{1}{2}(sumlimits_{k=0}^{n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i})$
Let $f=(f_0,f_1...,f_{n-1})$. We see that we can replace $hat{f}_{2k+1}$ in the first sum with $f_k$. We then want the other sum to also "be" $f$ and let the second sum run from the end to the start meaning :
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2(2n-1-k)+1} e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$
We can't put those two sums together yet, so we substitute $m=2n-1-k$ which means $k=2n-1-m$ and brings us to:
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{m=0}^{n-1} hat{f}_{2m+1} e^{-jpifrac{1}{2n}(2m+1)i})$
Finally we have that for identical $m$ and $k$ that $f_k = hat{f}_2m+1$ and we take the two sums together:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$=$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(4n-2k+1)i})$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-j2pi}e^{jpifrac{1}{2n} (2k+1)i)}$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{jpifrac{1}{2n} (2k+1)i)}$
Now remember that $cos(x)=frac{1}{2}(e^{ix}+e^{-ix})$ or $2cos(x)=(e^{ix}+e^{-ix})$. Concluding you have:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k 2cos(frac{pi}{2}(2k+1)j)$=$sumlimits_{k=0}^{n-1} f_k cos(pi(k+frac{1}{2})j)$ which had to be shown.
$endgroup$
add a comment |
$begingroup$
After understanding better I came up with a solution myself.
The DFT($f$)$_j$ I am using is
DFT($f$)$_j = frac{1}{n}sumlimits_{k=0}^{n-1} f_k e^{-j2pifrac{1}{n}ki}$
So $2n$*DFT($hat{f}$)$_j$ = $2nfrac{1}{4n}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-j2pifrac{1}{4n}ki}$ = $frac{1}{2}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-jpifrac{1}{2n}ki}$.
Now we see that only the odd $hat{f}_k$ matter here so we rewrite it as:
$frac{1}{2}sumlimits_{k=0}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$ = $frac{1}{2}(sumlimits_{k=0}^{n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i})$
Let $f=(f_0,f_1...,f_{n-1})$. We see that we can replace $hat{f}_{2k+1}$ in the first sum with $f_k$. We then want the other sum to also "be" $f$ and let the second sum run from the end to the start meaning :
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2(2n-1-k)+1} e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$
We can't put those two sums together yet, so we substitute $m=2n-1-k$ which means $k=2n-1-m$ and brings us to:
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{m=0}^{n-1} hat{f}_{2m+1} e^{-jpifrac{1}{2n}(2m+1)i})$
Finally we have that for identical $m$ and $k$ that $f_k = hat{f}_2m+1$ and we take the two sums together:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$=$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(4n-2k+1)i})$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-j2pi}e^{jpifrac{1}{2n} (2k+1)i)}$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{jpifrac{1}{2n} (2k+1)i)}$
Now remember that $cos(x)=frac{1}{2}(e^{ix}+e^{-ix})$ or $2cos(x)=(e^{ix}+e^{-ix})$. Concluding you have:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k 2cos(frac{pi}{2}(2k+1)j)$=$sumlimits_{k=0}^{n-1} f_k cos(pi(k+frac{1}{2})j)$ which had to be shown.
$endgroup$
add a comment |
$begingroup$
After understanding better I came up with a solution myself.
The DFT($f$)$_j$ I am using is
DFT($f$)$_j = frac{1}{n}sumlimits_{k=0}^{n-1} f_k e^{-j2pifrac{1}{n}ki}$
So $2n$*DFT($hat{f}$)$_j$ = $2nfrac{1}{4n}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-j2pifrac{1}{4n}ki}$ = $frac{1}{2}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-jpifrac{1}{2n}ki}$.
Now we see that only the odd $hat{f}_k$ matter here so we rewrite it as:
$frac{1}{2}sumlimits_{k=0}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$ = $frac{1}{2}(sumlimits_{k=0}^{n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i})$
Let $f=(f_0,f_1...,f_{n-1})$. We see that we can replace $hat{f}_{2k+1}$ in the first sum with $f_k$. We then want the other sum to also "be" $f$ and let the second sum run from the end to the start meaning :
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2(2n-1-k)+1} e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$
We can't put those two sums together yet, so we substitute $m=2n-1-k$ which means $k=2n-1-m$ and brings us to:
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{m=0}^{n-1} hat{f}_{2m+1} e^{-jpifrac{1}{2n}(2m+1)i})$
Finally we have that for identical $m$ and $k$ that $f_k = hat{f}_2m+1$ and we take the two sums together:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$=$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(4n-2k+1)i})$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-j2pi}e^{jpifrac{1}{2n} (2k+1)i)}$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{jpifrac{1}{2n} (2k+1)i)}$
Now remember that $cos(x)=frac{1}{2}(e^{ix}+e^{-ix})$ or $2cos(x)=(e^{ix}+e^{-ix})$. Concluding you have:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k 2cos(frac{pi}{2}(2k+1)j)$=$sumlimits_{k=0}^{n-1} f_k cos(pi(k+frac{1}{2})j)$ which had to be shown.
$endgroup$
After understanding better I came up with a solution myself.
The DFT($f$)$_j$ I am using is
DFT($f$)$_j = frac{1}{n}sumlimits_{k=0}^{n-1} f_k e^{-j2pifrac{1}{n}ki}$
So $2n$*DFT($hat{f}$)$_j$ = $2nfrac{1}{4n}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-j2pifrac{1}{4n}ki}$ = $frac{1}{2}sumlimits_{k=0}^{4n-1} hat{f}_k e^{-jpifrac{1}{2n}ki}$.
Now we see that only the odd $hat{f}_k$ matter here so we rewrite it as:
$frac{1}{2}sumlimits_{k=0}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$ = $frac{1}{2}(sumlimits_{k=0}^{n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2k+1} e^{-jpifrac{1}{2n}(2k+1)i})$
Let $f=(f_0,f_1...,f_{n-1})$. We see that we can replace $hat{f}_{2k+1}$ in the first sum with $f_k$. We then want the other sum to also "be" $f$ and let the second sum run from the end to the start meaning :
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{k=n}^{2n-1} hat{f}_{2(2n-1-k)+1} e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$
We can't put those two sums together yet, so we substitute $m=2n-1-k$ which means $k=2n-1-m$ and brings us to:
$frac{1}{2}(sumlimits_{k=0}^{n-1} f_k e^{-jpifrac{1}{2n}(2k+1)i}$+ $sumlimits_{m=0}^{n-1} hat{f}_{2m+1} e^{-jpifrac{1}{2n}(2m+1)i})$
Finally we have that for identical $m$ and $k$ that $f_k = hat{f}_2m+1$ and we take the two sums together:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(2(2n-1-k)+1)i})$=$frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-jpifrac{1}{2n}(4n-2k+1)i})$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{-j2pi}e^{jpifrac{1}{2n} (2k+1)i)}$ = $frac{1}{2}sumlimits_{k=0}^{n-1} f_k (e^{-jpifrac{1}{2n}(2k+1)i}+e^{jpifrac{1}{2n} (2k+1)i)}$
Now remember that $cos(x)=frac{1}{2}(e^{ix}+e^{-ix})$ or $2cos(x)=(e^{ix}+e^{-ix})$. Concluding you have:
$frac{1}{2}sumlimits_{k=0}^{n-1} f_k 2cos(frac{pi}{2}(2k+1)j)$=$sumlimits_{k=0}^{n-1} f_k cos(pi(k+frac{1}{2})j)$ which had to be shown.
answered Jan 15 at 23:13
babemcnuggetsbabemcnuggets
1129
1129
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071692%2fcalculating-dct-with-dft%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown