Finding $int_{0}^{1} frac{T_{i}^{*''}(x) T_{j}^{*}(x)}{sqrt{x-x^2}} dx$
$begingroup$
Shifted Chebyshev polynomials $$T_{i}^{*}(x) = cos(i arccos(2x-1))$$
We want to calculate $$I=int_{0}^{1} frac{T_{i}^{*''}(x) T_{j}^{*}(x)}{sqrt{x-x^2}} dx$$ Which is equal to $$sum_{substack{i=0 \ (i+j) even}}^{j-2} 2 delta_{ij} j(j^2-i^2)c_i$$
How to get this result
We know that
$$int_{0}^{1} frac{T_{i}^{*}(x) T_{j}^{*}(x)}{sqrt{x-x^2}} dx = delta_{ij}$$
Where $$
delta_{ij} =
left{
begin{array}{ll}
frac{pi}{c_{i}} & i=j \
0 & ineq j
end{array} , c_{i} =
left{
begin{array}{ll}
1 & i=0 \
2 & igeq 1
end{array}
right.
right.
$$
And We can write $$T_{i}^{*''}(x) =sum_{k=0}^{i-2} a_{k} T_{i}^{*}(x)$$
So how to get the required result above ?
if we got $a_{k}$ we are supposed to get the required result
How to get the required result above ?
And Is there a general formula to get $a_k$
such that $$T_{i}^{*(n)}(x) = sum_{k=0}^{i-2} a_{k} T_{i}^{*}(x) $$
Using Mathematica I have got :
integration definite-integrals orthogonal-polynomials chebyshev-polynomials
$endgroup$
add a comment |
$begingroup$
Shifted Chebyshev polynomials $$T_{i}^{*}(x) = cos(i arccos(2x-1))$$
We want to calculate $$I=int_{0}^{1} frac{T_{i}^{*''}(x) T_{j}^{*}(x)}{sqrt{x-x^2}} dx$$ Which is equal to $$sum_{substack{i=0 \ (i+j) even}}^{j-2} 2 delta_{ij} j(j^2-i^2)c_i$$
How to get this result
We know that
$$int_{0}^{1} frac{T_{i}^{*}(x) T_{j}^{*}(x)}{sqrt{x-x^2}} dx = delta_{ij}$$
Where $$
delta_{ij} =
left{
begin{array}{ll}
frac{pi}{c_{i}} & i=j \
0 & ineq j
end{array} , c_{i} =
left{
begin{array}{ll}
1 & i=0 \
2 & igeq 1
end{array}
right.
right.
$$
And We can write $$T_{i}^{*''}(x) =sum_{k=0}^{i-2} a_{k} T_{i}^{*}(x)$$
So how to get the required result above ?
if we got $a_{k}$ we are supposed to get the required result
How to get the required result above ?
And Is there a general formula to get $a_k$
such that $$T_{i}^{*(n)}(x) = sum_{k=0}^{i-2} a_{k} T_{i}^{*}(x) $$
Using Mathematica I have got :
integration definite-integrals orthogonal-polynomials chebyshev-polynomials
$endgroup$
add a comment |
$begingroup$
Shifted Chebyshev polynomials $$T_{i}^{*}(x) = cos(i arccos(2x-1))$$
We want to calculate $$I=int_{0}^{1} frac{T_{i}^{*''}(x) T_{j}^{*}(x)}{sqrt{x-x^2}} dx$$ Which is equal to $$sum_{substack{i=0 \ (i+j) even}}^{j-2} 2 delta_{ij} j(j^2-i^2)c_i$$
How to get this result
We know that
$$int_{0}^{1} frac{T_{i}^{*}(x) T_{j}^{*}(x)}{sqrt{x-x^2}} dx = delta_{ij}$$
Where $$
delta_{ij} =
left{
begin{array}{ll}
frac{pi}{c_{i}} & i=j \
0 & ineq j
end{array} , c_{i} =
left{
begin{array}{ll}
1 & i=0 \
2 & igeq 1
end{array}
right.
right.
$$
And We can write $$T_{i}^{*''}(x) =sum_{k=0}^{i-2} a_{k} T_{i}^{*}(x)$$
So how to get the required result above ?
if we got $a_{k}$ we are supposed to get the required result
How to get the required result above ?
And Is there a general formula to get $a_k$
such that $$T_{i}^{*(n)}(x) = sum_{k=0}^{i-2} a_{k} T_{i}^{*}(x) $$
Using Mathematica I have got :
integration definite-integrals orthogonal-polynomials chebyshev-polynomials
$endgroup$
Shifted Chebyshev polynomials $$T_{i}^{*}(x) = cos(i arccos(2x-1))$$
We want to calculate $$I=int_{0}^{1} frac{T_{i}^{*''}(x) T_{j}^{*}(x)}{sqrt{x-x^2}} dx$$ Which is equal to $$sum_{substack{i=0 \ (i+j) even}}^{j-2} 2 delta_{ij} j(j^2-i^2)c_i$$
How to get this result
We know that
$$int_{0}^{1} frac{T_{i}^{*}(x) T_{j}^{*}(x)}{sqrt{x-x^2}} dx = delta_{ij}$$
Where $$
delta_{ij} =
left{
begin{array}{ll}
frac{pi}{c_{i}} & i=j \
0 & ineq j
end{array} , c_{i} =
left{
begin{array}{ll}
1 & i=0 \
2 & igeq 1
end{array}
right.
right.
$$
And We can write $$T_{i}^{*''}(x) =sum_{k=0}^{i-2} a_{k} T_{i}^{*}(x)$$
So how to get the required result above ?
if we got $a_{k}$ we are supposed to get the required result
How to get the required result above ?
And Is there a general formula to get $a_k$
such that $$T_{i}^{*(n)}(x) = sum_{k=0}^{i-2} a_{k} T_{i}^{*}(x) $$
Using Mathematica I have got :
integration definite-integrals orthogonal-polynomials chebyshev-polynomials
integration definite-integrals orthogonal-polynomials chebyshev-polynomials
edited Jan 13 at 16:54
topspin
asked Jan 13 at 7:44
topspintopspin
727413
727413
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071780%2ffinding-int-01-fract-ix-t-jx-sqrtx-x2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071780%2ffinding-int-01-fract-ix-t-jx-sqrtx-x2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown