Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$












2












$begingroup$



Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$.




I'm sorry if I'm asking this beginner question, but I'm really confused about how to solve this problem. I've tried to substitute $u=4$ and other things that I thought might work. I'm kinda stuck.



I've got $f'(4)=-frac{27}6$ but in the textbook it is $-frac9{40}$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    How did you get the answer? It might be a simple math mistake
    $endgroup$
    – Andrei
    Jan 13 at 2:22






  • 1




    $begingroup$
    And why do you have twice $f(4)=6$ in the title?
    $endgroup$
    – Andrei
    Jan 13 at 2:24










  • $begingroup$
    @Andrei where ?
    $endgroup$
    – Zein IF
    Jan 13 at 6:48
















2












$begingroup$



Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$.




I'm sorry if I'm asking this beginner question, but I'm really confused about how to solve this problem. I've tried to substitute $u=4$ and other things that I thought might work. I'm kinda stuck.



I've got $f'(4)=-frac{27}6$ but in the textbook it is $-frac9{40}$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    How did you get the answer? It might be a simple math mistake
    $endgroup$
    – Andrei
    Jan 13 at 2:22






  • 1




    $begingroup$
    And why do you have twice $f(4)=6$ in the title?
    $endgroup$
    – Andrei
    Jan 13 at 2:24










  • $begingroup$
    @Andrei where ?
    $endgroup$
    – Zein IF
    Jan 13 at 6:48














2












2








2





$begingroup$



Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$.




I'm sorry if I'm asking this beginner question, but I'm really confused about how to solve this problem. I've tried to substitute $u=4$ and other things that I thought might work. I'm kinda stuck.



I've got $f'(4)=-frac{27}6$ but in the textbook it is $-frac9{40}$.










share|cite|improve this question











$endgroup$





Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$.




I'm sorry if I'm asking this beginner question, but I'm really confused about how to solve this problem. I've tried to substitute $u=4$ and other things that I thought might work. I'm kinda stuck.



I've got $f'(4)=-frac{27}6$ but in the textbook it is $-frac9{40}$.







derivatives






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 13 at 2:46









Parcly Taxel

41.8k1372101




41.8k1372101










asked Jan 13 at 2:04









Zein IFZein IF

134




134








  • 1




    $begingroup$
    How did you get the answer? It might be a simple math mistake
    $endgroup$
    – Andrei
    Jan 13 at 2:22






  • 1




    $begingroup$
    And why do you have twice $f(4)=6$ in the title?
    $endgroup$
    – Andrei
    Jan 13 at 2:24










  • $begingroup$
    @Andrei where ?
    $endgroup$
    – Zein IF
    Jan 13 at 6:48














  • 1




    $begingroup$
    How did you get the answer? It might be a simple math mistake
    $endgroup$
    – Andrei
    Jan 13 at 2:22






  • 1




    $begingroup$
    And why do you have twice $f(4)=6$ in the title?
    $endgroup$
    – Andrei
    Jan 13 at 2:24










  • $begingroup$
    @Andrei where ?
    $endgroup$
    – Zein IF
    Jan 13 at 6:48








1




1




$begingroup$
How did you get the answer? It might be a simple math mistake
$endgroup$
– Andrei
Jan 13 at 2:22




$begingroup$
How did you get the answer? It might be a simple math mistake
$endgroup$
– Andrei
Jan 13 at 2:22




1




1




$begingroup$
And why do you have twice $f(4)=6$ in the title?
$endgroup$
– Andrei
Jan 13 at 2:24




$begingroup$
And why do you have twice $f(4)=6$ in the title?
$endgroup$
– Andrei
Jan 13 at 2:24












$begingroup$
@Andrei where ?
$endgroup$
– Zein IF
Jan 13 at 6:48




$begingroup$
@Andrei where ?
$endgroup$
– Zein IF
Jan 13 at 6:48










3 Answers
3






active

oldest

votes


















0












$begingroup$

Note that for $x=2, u=4$
$$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    oh jeez i forgot to differentiate the f(u(x)).
    $endgroup$
    – Zein IF
    Jan 13 at 6:52



















0












$begingroup$

Differentiate with respect to $x$:
$$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
Substitute the known values at $x=2$ and simplify:
$$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
$$frac{18}{24}=10f'(4)+3$$
$$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
So the textbook is right after all.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
    $$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
    &=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$

    Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071626%2flet-y-fu3x2-and-u-x3-2x-if-f4-6-and-fracdydx-18-when-x-2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0












      $begingroup$

      Note that for $x=2, u=4$
      $$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        oh jeez i forgot to differentiate the f(u(x)).
        $endgroup$
        – Zein IF
        Jan 13 at 6:52
















      0












      $begingroup$

      Note that for $x=2, u=4$
      $$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        oh jeez i forgot to differentiate the f(u(x)).
        $endgroup$
        – Zein IF
        Jan 13 at 6:52














      0












      0








      0





      $begingroup$

      Note that for $x=2, u=4$
      $$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$






      share|cite|improve this answer









      $endgroup$



      Note that for $x=2, u=4$
      $$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jan 13 at 3:19









      Awnon BhowmikAwnon Bhowmik

      1,22028




      1,22028












      • $begingroup$
        oh jeez i forgot to differentiate the f(u(x)).
        $endgroup$
        – Zein IF
        Jan 13 at 6:52


















      • $begingroup$
        oh jeez i forgot to differentiate the f(u(x)).
        $endgroup$
        – Zein IF
        Jan 13 at 6:52
















      $begingroup$
      oh jeez i forgot to differentiate the f(u(x)).
      $endgroup$
      – Zein IF
      Jan 13 at 6:52




      $begingroup$
      oh jeez i forgot to differentiate the f(u(x)).
      $endgroup$
      – Zein IF
      Jan 13 at 6:52











      0












      $begingroup$

      Differentiate with respect to $x$:
      $$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
      Substitute the known values at $x=2$ and simplify:
      $$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
      $$frac{18}{24}=10f'(4)+3$$
      $$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
      So the textbook is right after all.






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        Differentiate with respect to $x$:
        $$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
        Substitute the known values at $x=2$ and simplify:
        $$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
        $$frac{18}{24}=10f'(4)+3$$
        $$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
        So the textbook is right after all.






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          Differentiate with respect to $x$:
          $$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
          Substitute the known values at $x=2$ and simplify:
          $$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
          $$frac{18}{24}=10f'(4)+3$$
          $$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
          So the textbook is right after all.






          share|cite|improve this answer









          $endgroup$



          Differentiate with respect to $x$:
          $$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
          Substitute the known values at $x=2$ and simplify:
          $$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
          $$frac{18}{24}=10f'(4)+3$$
          $$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
          So the textbook is right after all.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 13 at 3:09









          Parcly TaxelParcly Taxel

          41.8k1372101




          41.8k1372101























              0












              $begingroup$

              You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
              $$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
              &=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$

              Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
                $$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
                &=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$

                Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
                  $$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
                  &=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$

                  Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.






                  share|cite|improve this answer









                  $endgroup$



                  You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
                  $$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
                  &=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$

                  Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 13 at 3:11









                  AndreiAndrei

                  12k21126




                  12k21126






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071626%2flet-y-fu3x2-and-u-x3-2x-if-f4-6-and-fracdydx-18-when-x-2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith