Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$
$begingroup$
Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$.
I'm sorry if I'm asking this beginner question, but I'm really confused about how to solve this problem. I've tried to substitute $u=4$ and other things that I thought might work. I'm kinda stuck.
I've got $f'(4)=-frac{27}6$ but in the textbook it is $-frac9{40}$.
derivatives
$endgroup$
add a comment |
$begingroup$
Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$.
I'm sorry if I'm asking this beginner question, but I'm really confused about how to solve this problem. I've tried to substitute $u=4$ and other things that I thought might work. I'm kinda stuck.
I've got $f'(4)=-frac{27}6$ but in the textbook it is $-frac9{40}$.
derivatives
$endgroup$
1
$begingroup$
How did you get the answer? It might be a simple math mistake
$endgroup$
– Andrei
Jan 13 at 2:22
1
$begingroup$
And why do you have twice $f(4)=6$ in the title?
$endgroup$
– Andrei
Jan 13 at 2:24
$begingroup$
@Andrei where ?
$endgroup$
– Zein IF
Jan 13 at 6:48
add a comment |
$begingroup$
Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$.
I'm sorry if I'm asking this beginner question, but I'm really confused about how to solve this problem. I've tried to substitute $u=4$ and other things that I thought might work. I'm kinda stuck.
I've got $f'(4)=-frac{27}6$ but in the textbook it is $-frac9{40}$.
derivatives
$endgroup$
Let $y=(f(u)+3x)^2$ and $u=x^3-2x$. If $f(4)=6$ and $frac{dy}{dx}=18$ when $x=2$, find $f'(4)$.
I'm sorry if I'm asking this beginner question, but I'm really confused about how to solve this problem. I've tried to substitute $u=4$ and other things that I thought might work. I'm kinda stuck.
I've got $f'(4)=-frac{27}6$ but in the textbook it is $-frac9{40}$.
derivatives
derivatives
edited Jan 13 at 2:46


Parcly Taxel
41.8k1372101
41.8k1372101
asked Jan 13 at 2:04


Zein IFZein IF
134
134
1
$begingroup$
How did you get the answer? It might be a simple math mistake
$endgroup$
– Andrei
Jan 13 at 2:22
1
$begingroup$
And why do you have twice $f(4)=6$ in the title?
$endgroup$
– Andrei
Jan 13 at 2:24
$begingroup$
@Andrei where ?
$endgroup$
– Zein IF
Jan 13 at 6:48
add a comment |
1
$begingroup$
How did you get the answer? It might be a simple math mistake
$endgroup$
– Andrei
Jan 13 at 2:22
1
$begingroup$
And why do you have twice $f(4)=6$ in the title?
$endgroup$
– Andrei
Jan 13 at 2:24
$begingroup$
@Andrei where ?
$endgroup$
– Zein IF
Jan 13 at 6:48
1
1
$begingroup$
How did you get the answer? It might be a simple math mistake
$endgroup$
– Andrei
Jan 13 at 2:22
$begingroup$
How did you get the answer? It might be a simple math mistake
$endgroup$
– Andrei
Jan 13 at 2:22
1
1
$begingroup$
And why do you have twice $f(4)=6$ in the title?
$endgroup$
– Andrei
Jan 13 at 2:24
$begingroup$
And why do you have twice $f(4)=6$ in the title?
$endgroup$
– Andrei
Jan 13 at 2:24
$begingroup$
@Andrei where ?
$endgroup$
– Zein IF
Jan 13 at 6:48
$begingroup$
@Andrei where ?
$endgroup$
– Zein IF
Jan 13 at 6:48
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Note that for $x=2, u=4$
$$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$
$endgroup$
$begingroup$
oh jeez i forgot to differentiate the f(u(x)).
$endgroup$
– Zein IF
Jan 13 at 6:52
add a comment |
$begingroup$
Differentiate with respect to $x$:
$$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
Substitute the known values at $x=2$ and simplify:
$$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
$$frac{18}{24}=10f'(4)+3$$
$$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
So the textbook is right after all.
$endgroup$
add a comment |
$begingroup$
You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
$$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
&=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$
Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071626%2flet-y-fu3x2-and-u-x3-2x-if-f4-6-and-fracdydx-18-when-x-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that for $x=2, u=4$
$$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$
$endgroup$
$begingroup$
oh jeez i forgot to differentiate the f(u(x)).
$endgroup$
– Zein IF
Jan 13 at 6:52
add a comment |
$begingroup$
Note that for $x=2, u=4$
$$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$
$endgroup$
$begingroup$
oh jeez i forgot to differentiate the f(u(x)).
$endgroup$
– Zein IF
Jan 13 at 6:52
add a comment |
$begingroup$
Note that for $x=2, u=4$
$$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$
$endgroup$
Note that for $x=2, u=4$
$$begin{align}y&=(f(u(x))+3x)^2\dfrac{mathrm d}{mathrm dx}(y)&=dfrac{mathrm d}{mathrm dx}(f(u(x))+3x)^2\dfrac{mathrm dy}{mathrm dx}&=2(f(u(x))+3x)cdotdfrac{mathrm d}{mathrm dx}(f(u(x))+3x)\&=2(f(u(x))+3x)(f'(u(x))cdot u'(x)+3)\text{Setting }&x=2...\18&=2(f(u(2))+6)(f'(u(2))cdot u'(2)+3)\9&=(f(4)+6)(f'(4)cdot(3cdot2^2-2)+3)\9&=12(10f'(4)+3)\dfrac34&=10f'(4)+3\10f'(4)&=-dfrac94\f'(4)&=-dfrac9{40}end{align}$$
answered Jan 13 at 3:19
Awnon BhowmikAwnon Bhowmik
1,22028
1,22028
$begingroup$
oh jeez i forgot to differentiate the f(u(x)).
$endgroup$
– Zein IF
Jan 13 at 6:52
add a comment |
$begingroup$
oh jeez i forgot to differentiate the f(u(x)).
$endgroup$
– Zein IF
Jan 13 at 6:52
$begingroup$
oh jeez i forgot to differentiate the f(u(x)).
$endgroup$
– Zein IF
Jan 13 at 6:52
$begingroup$
oh jeez i forgot to differentiate the f(u(x)).
$endgroup$
– Zein IF
Jan 13 at 6:52
add a comment |
$begingroup$
Differentiate with respect to $x$:
$$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
Substitute the known values at $x=2$ and simplify:
$$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
$$frac{18}{24}=10f'(4)+3$$
$$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
So the textbook is right after all.
$endgroup$
add a comment |
$begingroup$
Differentiate with respect to $x$:
$$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
Substitute the known values at $x=2$ and simplify:
$$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
$$frac{18}{24}=10f'(4)+3$$
$$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
So the textbook is right after all.
$endgroup$
add a comment |
$begingroup$
Differentiate with respect to $x$:
$$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
Substitute the known values at $x=2$ and simplify:
$$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
$$frac{18}{24}=10f'(4)+3$$
$$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
So the textbook is right after all.
$endgroup$
Differentiate with respect to $x$:
$$y'=2(f(u)+3x)(f'(u)u'+3)=2(f(x^3-2x)+3x)(f'(x^3-2x)(3x^2-2)+3)$$
Substitute the known values at $x=2$ and simplify:
$$18=2(f(4)+6)(10f'(4)+3)=2cdot12(10f'(4)+3)$$
$$frac{18}{24}=10f'(4)+3$$
$$f'(4)=frac{3/4-3}{10}=-frac9{40}$$
So the textbook is right after all.
answered Jan 13 at 3:09


Parcly TaxelParcly Taxel
41.8k1372101
41.8k1372101
add a comment |
add a comment |
$begingroup$
You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
$$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
&=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$
Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.
$endgroup$
add a comment |
$begingroup$
You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
$$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
&=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$
Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.
$endgroup$
add a comment |
$begingroup$
You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
$$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
&=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$
Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.
$endgroup$
You have $u(2)=4$ so $f(u(2))=f(4)=6$. Let's write $frac{dy}{dx}$:
$$begin{align}frac{dy}{dx}&=2(f(u)+3x)frac d{dx}(f(u)+3x)\
&=2(f(u)+3x)left(frac{df(u(x))}{dx}+3right)\&=2(f(u)+3x)left(frac{df(u)}{du}frac{du}{dx}+3right)\&=2(f(u)+3x)left(f'(u)(3x^2-2)+3right)end{align}$$
Now just plug in $frac{dy}{dx}=18$, $u=4$, $f(4)=6$, and $x=2$.
answered Jan 13 at 3:11
AndreiAndrei
12k21126
12k21126
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071626%2flet-y-fu3x2-and-u-x3-2x-if-f4-6-and-fracdydx-18-when-x-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
How did you get the answer? It might be a simple math mistake
$endgroup$
– Andrei
Jan 13 at 2:22
1
$begingroup$
And why do you have twice $f(4)=6$ in the title?
$endgroup$
– Andrei
Jan 13 at 2:24
$begingroup$
@Andrei where ?
$endgroup$
– Zein IF
Jan 13 at 6:48