Reconstructing a polynomial from its coefficient array












2












$begingroup$


A polynomial coefficient matrix:



mat = 
CoefficientList[3 + 5 x^3 + 4 y^3 + 2 x + 6 x^2 y + 7 x y^2 + 8 x y, {x, y}];


begin{equation}
left(
begin{array}{cccc}
3 & 0 & 0 & 4 \
2 & 8 & 7 & 0 \
0 & 6 & 0 & 0 \
5 & 0 & 0 & 0 \
end{array}
right)
end{equation}



Another matrix:



list = 
{{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1,o1, p1}};


whose matrix form is:
begin{equation}
left(
begin{array}{cccc}
a1 & b1 & c1 & d1 \
e1 & f1 & g1 & h1 \
i1 & j1 & k1 & l1 \
m1 & n1 & o1 & p1 \
end{array}
right)
end{equation}



How can I generate the following polynomial automatically?



$text{a1}+text{d1} y^3+text{e1} x+text{f1} x y+text{g1} x y^2+text{j1} x^2 y+text{m1} x^3$










share|improve this question











$endgroup$








  • 1




    $begingroup$
    Why are some entries of the matrix ignored? Maybe this, if that is a mistake: {{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1, o1, p1}}.y^Range[0, 3].x^Range[0, 3]
    $endgroup$
    – Michael E2
    Jan 13 at 0:41










  • $begingroup$
    There's an example in the docs for CoefficientList for how to recover the polynomial from the matrix: Look for Fold[FromDigits[Reverse[#1], #2] &, %, {x, y}].
    $endgroup$
    – Michael E2
    Jan 13 at 0:42










  • $begingroup$
    @MichaelE2 I am ignoring only those entries for which the constant is zero as in coefficientlist matrix.
    $endgroup$
    – Chandan Sharma
    Jan 13 at 0:48






  • 1




    $begingroup$
    Do you mean Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat * list, {x, y}]?
    $endgroup$
    – Michael E2
    Jan 13 at 1:43












  • $begingroup$
    @MichaelE2 Exactly.
    $endgroup$
    – Chandan Sharma
    Jan 13 at 1:53
















2












$begingroup$


A polynomial coefficient matrix:



mat = 
CoefficientList[3 + 5 x^3 + 4 y^3 + 2 x + 6 x^2 y + 7 x y^2 + 8 x y, {x, y}];


begin{equation}
left(
begin{array}{cccc}
3 & 0 & 0 & 4 \
2 & 8 & 7 & 0 \
0 & 6 & 0 & 0 \
5 & 0 & 0 & 0 \
end{array}
right)
end{equation}



Another matrix:



list = 
{{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1,o1, p1}};


whose matrix form is:
begin{equation}
left(
begin{array}{cccc}
a1 & b1 & c1 & d1 \
e1 & f1 & g1 & h1 \
i1 & j1 & k1 & l1 \
m1 & n1 & o1 & p1 \
end{array}
right)
end{equation}



How can I generate the following polynomial automatically?



$text{a1}+text{d1} y^3+text{e1} x+text{f1} x y+text{g1} x y^2+text{j1} x^2 y+text{m1} x^3$










share|improve this question











$endgroup$








  • 1




    $begingroup$
    Why are some entries of the matrix ignored? Maybe this, if that is a mistake: {{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1, o1, p1}}.y^Range[0, 3].x^Range[0, 3]
    $endgroup$
    – Michael E2
    Jan 13 at 0:41










  • $begingroup$
    There's an example in the docs for CoefficientList for how to recover the polynomial from the matrix: Look for Fold[FromDigits[Reverse[#1], #2] &, %, {x, y}].
    $endgroup$
    – Michael E2
    Jan 13 at 0:42










  • $begingroup$
    @MichaelE2 I am ignoring only those entries for which the constant is zero as in coefficientlist matrix.
    $endgroup$
    – Chandan Sharma
    Jan 13 at 0:48






  • 1




    $begingroup$
    Do you mean Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat * list, {x, y}]?
    $endgroup$
    – Michael E2
    Jan 13 at 1:43












  • $begingroup$
    @MichaelE2 Exactly.
    $endgroup$
    – Chandan Sharma
    Jan 13 at 1:53














2












2








2





$begingroup$


A polynomial coefficient matrix:



mat = 
CoefficientList[3 + 5 x^3 + 4 y^3 + 2 x + 6 x^2 y + 7 x y^2 + 8 x y, {x, y}];


begin{equation}
left(
begin{array}{cccc}
3 & 0 & 0 & 4 \
2 & 8 & 7 & 0 \
0 & 6 & 0 & 0 \
5 & 0 & 0 & 0 \
end{array}
right)
end{equation}



Another matrix:



list = 
{{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1,o1, p1}};


whose matrix form is:
begin{equation}
left(
begin{array}{cccc}
a1 & b1 & c1 & d1 \
e1 & f1 & g1 & h1 \
i1 & j1 & k1 & l1 \
m1 & n1 & o1 & p1 \
end{array}
right)
end{equation}



How can I generate the following polynomial automatically?



$text{a1}+text{d1} y^3+text{e1} x+text{f1} x y+text{g1} x y^2+text{j1} x^2 y+text{m1} x^3$










share|improve this question











$endgroup$




A polynomial coefficient matrix:



mat = 
CoefficientList[3 + 5 x^3 + 4 y^3 + 2 x + 6 x^2 y + 7 x y^2 + 8 x y, {x, y}];


begin{equation}
left(
begin{array}{cccc}
3 & 0 & 0 & 4 \
2 & 8 & 7 & 0 \
0 & 6 & 0 & 0 \
5 & 0 & 0 & 0 \
end{array}
right)
end{equation}



Another matrix:



list = 
{{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1,o1, p1}};


whose matrix form is:
begin{equation}
left(
begin{array}{cccc}
a1 & b1 & c1 & d1 \
e1 & f1 & g1 & h1 \
i1 & j1 & k1 & l1 \
m1 & n1 & o1 & p1 \
end{array}
right)
end{equation}



How can I generate the following polynomial automatically?



$text{a1}+text{d1} y^3+text{e1} x+text{f1} x y+text{g1} x y^2+text{j1} x^2 y+text{m1} x^3$







list-manipulation algebraic-manipulation






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jan 13 at 1:25









m_goldberg

86k872196




86k872196










asked Jan 13 at 0:38









Chandan SharmaChandan Sharma

1246




1246








  • 1




    $begingroup$
    Why are some entries of the matrix ignored? Maybe this, if that is a mistake: {{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1, o1, p1}}.y^Range[0, 3].x^Range[0, 3]
    $endgroup$
    – Michael E2
    Jan 13 at 0:41










  • $begingroup$
    There's an example in the docs for CoefficientList for how to recover the polynomial from the matrix: Look for Fold[FromDigits[Reverse[#1], #2] &, %, {x, y}].
    $endgroup$
    – Michael E2
    Jan 13 at 0:42










  • $begingroup$
    @MichaelE2 I am ignoring only those entries for which the constant is zero as in coefficientlist matrix.
    $endgroup$
    – Chandan Sharma
    Jan 13 at 0:48






  • 1




    $begingroup$
    Do you mean Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat * list, {x, y}]?
    $endgroup$
    – Michael E2
    Jan 13 at 1:43












  • $begingroup$
    @MichaelE2 Exactly.
    $endgroup$
    – Chandan Sharma
    Jan 13 at 1:53














  • 1




    $begingroup$
    Why are some entries of the matrix ignored? Maybe this, if that is a mistake: {{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1, o1, p1}}.y^Range[0, 3].x^Range[0, 3]
    $endgroup$
    – Michael E2
    Jan 13 at 0:41










  • $begingroup$
    There's an example in the docs for CoefficientList for how to recover the polynomial from the matrix: Look for Fold[FromDigits[Reverse[#1], #2] &, %, {x, y}].
    $endgroup$
    – Michael E2
    Jan 13 at 0:42










  • $begingroup$
    @MichaelE2 I am ignoring only those entries for which the constant is zero as in coefficientlist matrix.
    $endgroup$
    – Chandan Sharma
    Jan 13 at 0:48






  • 1




    $begingroup$
    Do you mean Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat * list, {x, y}]?
    $endgroup$
    – Michael E2
    Jan 13 at 1:43












  • $begingroup$
    @MichaelE2 Exactly.
    $endgroup$
    – Chandan Sharma
    Jan 13 at 1:53








1




1




$begingroup$
Why are some entries of the matrix ignored? Maybe this, if that is a mistake: {{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1, o1, p1}}.y^Range[0, 3].x^Range[0, 3]
$endgroup$
– Michael E2
Jan 13 at 0:41




$begingroup$
Why are some entries of the matrix ignored? Maybe this, if that is a mistake: {{a1, b1, c1, d1}, {e1, f1, g1, h1}, {i1, j1, k1, l1}, {m1, n1, o1, p1}}.y^Range[0, 3].x^Range[0, 3]
$endgroup$
– Michael E2
Jan 13 at 0:41












$begingroup$
There's an example in the docs for CoefficientList for how to recover the polynomial from the matrix: Look for Fold[FromDigits[Reverse[#1], #2] &, %, {x, y}].
$endgroup$
– Michael E2
Jan 13 at 0:42




$begingroup$
There's an example in the docs for CoefficientList for how to recover the polynomial from the matrix: Look for Fold[FromDigits[Reverse[#1], #2] &, %, {x, y}].
$endgroup$
– Michael E2
Jan 13 at 0:42












$begingroup$
@MichaelE2 I am ignoring only those entries for which the constant is zero as in coefficientlist matrix.
$endgroup$
– Chandan Sharma
Jan 13 at 0:48




$begingroup$
@MichaelE2 I am ignoring only those entries for which the constant is zero as in coefficientlist matrix.
$endgroup$
– Chandan Sharma
Jan 13 at 0:48




1




1




$begingroup$
Do you mean Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat * list, {x, y}]?
$endgroup$
– Michael E2
Jan 13 at 1:43






$begingroup$
Do you mean Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat * list, {x, y}]?
$endgroup$
– Michael E2
Jan 13 at 1:43














$begingroup$
@MichaelE2 Exactly.
$endgroup$
– Chandan Sharma
Jan 13 at 1:53




$begingroup$
@MichaelE2 Exactly.
$endgroup$
– Chandan Sharma
Jan 13 at 1:53










5 Answers
5






active

oldest

votes


















2












$begingroup$

Using mat as the template:



Plus @@ Flatten[Table[If[mat[[i, j]] == 0, 0, list[[i, j]] x^(i - 1) y^(j - 1)], 
{i, 1, 4}, {j, 1, 4}]]
(* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)





share|improve this answer









$endgroup$





















    7












    $begingroup$

    Internal`FromCoefficientList[mat, {x, y}]



    3 + 2 x + 5 x^3 + 8 x y + 6 x^2 y + 7 x y^2 + 4 y^3




    Internal`FromCoefficientList[list Unitize[mat], {x, y}]



    a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3







    share|improve this answer









    $endgroup$





















      3












      $begingroup$

      Adapting an example from the documentation for CoefficientList:



      Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat*list, {x, y}]
      (* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)





      share|improve this answer









      $endgroup$





















        3












        $begingroup$

        Terse:



        Total[Array[x^# y^#2 &, {4, 4}, 0] list Unitize@mat, 2]



        a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3






        share|improve this answer









        $endgroup$





















          2












          $begingroup$

          You will have to tell Mathematica where the zero coefficients are, but if you do that it can be done like so:



          list = {{a1, 0, 0, d1}, {e1, f1, g1, 0}, {0, 0, 0, l1}, {m1, 0, 0, 0}}; 
          Fold[FromDigits[Reverse[#1], #2] &, list, {x, y}] // Expand



          a1 + e1 x + m1 x^3 + f1 x y + g1 x y^2 + d1 y^3 + l1 x^2 y^3




          This is discussed in the documentation of CoefficientList in the section Properties & Relations.






          share|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "387"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189379%2freconstructing-a-polynomial-from-its-coefficient-array%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            5 Answers
            5






            active

            oldest

            votes








            5 Answers
            5






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Using mat as the template:



            Plus @@ Flatten[Table[If[mat[[i, j]] == 0, 0, list[[i, j]] x^(i - 1) y^(j - 1)], 
            {i, 1, 4}, {j, 1, 4}]]
            (* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)





            share|improve this answer









            $endgroup$


















              2












              $begingroup$

              Using mat as the template:



              Plus @@ Flatten[Table[If[mat[[i, j]] == 0, 0, list[[i, j]] x^(i - 1) y^(j - 1)], 
              {i, 1, 4}, {j, 1, 4}]]
              (* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)





              share|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Using mat as the template:



                Plus @@ Flatten[Table[If[mat[[i, j]] == 0, 0, list[[i, j]] x^(i - 1) y^(j - 1)], 
                {i, 1, 4}, {j, 1, 4}]]
                (* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)





                share|improve this answer









                $endgroup$



                Using mat as the template:



                Plus @@ Flatten[Table[If[mat[[i, j]] == 0, 0, list[[i, j]] x^(i - 1) y^(j - 1)], 
                {i, 1, 4}, {j, 1, 4}]]
                (* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Jan 13 at 1:35









                John DotyJohn Doty

                6,95811024




                6,95811024























                    7












                    $begingroup$

                    Internal`FromCoefficientList[mat, {x, y}]



                    3 + 2 x + 5 x^3 + 8 x y + 6 x^2 y + 7 x y^2 + 4 y^3




                    Internal`FromCoefficientList[list Unitize[mat], {x, y}]



                    a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3







                    share|improve this answer









                    $endgroup$


















                      7












                      $begingroup$

                      Internal`FromCoefficientList[mat, {x, y}]



                      3 + 2 x + 5 x^3 + 8 x y + 6 x^2 y + 7 x y^2 + 4 y^3




                      Internal`FromCoefficientList[list Unitize[mat], {x, y}]



                      a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3







                      share|improve this answer









                      $endgroup$
















                        7












                        7








                        7





                        $begingroup$

                        Internal`FromCoefficientList[mat, {x, y}]



                        3 + 2 x + 5 x^3 + 8 x y + 6 x^2 y + 7 x y^2 + 4 y^3




                        Internal`FromCoefficientList[list Unitize[mat], {x, y}]



                        a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3







                        share|improve this answer









                        $endgroup$



                        Internal`FromCoefficientList[mat, {x, y}]



                        3 + 2 x + 5 x^3 + 8 x y + 6 x^2 y + 7 x y^2 + 4 y^3




                        Internal`FromCoefficientList[list Unitize[mat], {x, y}]



                        a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3








                        share|improve this answer












                        share|improve this answer



                        share|improve this answer










                        answered Jan 13 at 2:41









                        kglrkglr

                        183k10201416




                        183k10201416























                            3












                            $begingroup$

                            Adapting an example from the documentation for CoefficientList:



                            Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat*list, {x, y}]
                            (* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)





                            share|improve this answer









                            $endgroup$


















                              3












                              $begingroup$

                              Adapting an example from the documentation for CoefficientList:



                              Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat*list, {x, y}]
                              (* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)





                              share|improve this answer









                              $endgroup$
















                                3












                                3








                                3





                                $begingroup$

                                Adapting an example from the documentation for CoefficientList:



                                Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat*list, {x, y}]
                                (* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)





                                share|improve this answer









                                $endgroup$



                                Adapting an example from the documentation for CoefficientList:



                                Fold[FromDigits[Reverse[#1], #2] &, Unitize@mat*list, {x, y}]
                                (* a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3 *)






                                share|improve this answer












                                share|improve this answer



                                share|improve this answer










                                answered Jan 13 at 2:08









                                Michael E2Michael E2

                                147k12197473




                                147k12197473























                                    3












                                    $begingroup$

                                    Terse:



                                    Total[Array[x^# y^#2 &, {4, 4}, 0] list Unitize@mat, 2]



                                    a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3






                                    share|improve this answer









                                    $endgroup$


















                                      3












                                      $begingroup$

                                      Terse:



                                      Total[Array[x^# y^#2 &, {4, 4}, 0] list Unitize@mat, 2]



                                      a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3






                                      share|improve this answer









                                      $endgroup$
















                                        3












                                        3








                                        3





                                        $begingroup$

                                        Terse:



                                        Total[Array[x^# y^#2 &, {4, 4}, 0] list Unitize@mat, 2]



                                        a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3






                                        share|improve this answer









                                        $endgroup$



                                        Terse:



                                        Total[Array[x^# y^#2 &, {4, 4}, 0] list Unitize@mat, 2]



                                        a1 + e1 x + m1 x^3 + f1 x y + j1 x^2 y + g1 x y^2 + d1 y^3







                                        share|improve this answer












                                        share|improve this answer



                                        share|improve this answer










                                        answered Jan 13 at 4:21









                                        Mr.WizardMr.Wizard

                                        231k294761046




                                        231k294761046























                                            2












                                            $begingroup$

                                            You will have to tell Mathematica where the zero coefficients are, but if you do that it can be done like so:



                                            list = {{a1, 0, 0, d1}, {e1, f1, g1, 0}, {0, 0, 0, l1}, {m1, 0, 0, 0}}; 
                                            Fold[FromDigits[Reverse[#1], #2] &, list, {x, y}] // Expand



                                            a1 + e1 x + m1 x^3 + f1 x y + g1 x y^2 + d1 y^3 + l1 x^2 y^3




                                            This is discussed in the documentation of CoefficientList in the section Properties & Relations.






                                            share|improve this answer









                                            $endgroup$


















                                              2












                                              $begingroup$

                                              You will have to tell Mathematica where the zero coefficients are, but if you do that it can be done like so:



                                              list = {{a1, 0, 0, d1}, {e1, f1, g1, 0}, {0, 0, 0, l1}, {m1, 0, 0, 0}}; 
                                              Fold[FromDigits[Reverse[#1], #2] &, list, {x, y}] // Expand



                                              a1 + e1 x + m1 x^3 + f1 x y + g1 x y^2 + d1 y^3 + l1 x^2 y^3




                                              This is discussed in the documentation of CoefficientList in the section Properties & Relations.






                                              share|improve this answer









                                              $endgroup$
















                                                2












                                                2








                                                2





                                                $begingroup$

                                                You will have to tell Mathematica where the zero coefficients are, but if you do that it can be done like so:



                                                list = {{a1, 0, 0, d1}, {e1, f1, g1, 0}, {0, 0, 0, l1}, {m1, 0, 0, 0}}; 
                                                Fold[FromDigits[Reverse[#1], #2] &, list, {x, y}] // Expand



                                                a1 + e1 x + m1 x^3 + f1 x y + g1 x y^2 + d1 y^3 + l1 x^2 y^3




                                                This is discussed in the documentation of CoefficientList in the section Properties & Relations.






                                                share|improve this answer









                                                $endgroup$



                                                You will have to tell Mathematica where the zero coefficients are, but if you do that it can be done like so:



                                                list = {{a1, 0, 0, d1}, {e1, f1, g1, 0}, {0, 0, 0, l1}, {m1, 0, 0, 0}}; 
                                                Fold[FromDigits[Reverse[#1], #2] &, list, {x, y}] // Expand



                                                a1 + e1 x + m1 x^3 + f1 x y + g1 x y^2 + d1 y^3 + l1 x^2 y^3




                                                This is discussed in the documentation of CoefficientList in the section Properties & Relations.







                                                share|improve this answer












                                                share|improve this answer



                                                share|improve this answer










                                                answered Jan 13 at 1:14









                                                m_goldbergm_goldberg

                                                86k872196




                                                86k872196






























                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematica Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189379%2freconstructing-a-polynomial-from-its-coefficient-array%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    MongoDB - Not Authorized To Execute Command

                                                    How to fix TextFormField cause rebuild widget in Flutter

                                                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith