Rectangle paramtrization
$begingroup$
Let $Gamma=ABCD$, where:
$$A(0,0),B(a,0),C(a,alpha),D(0,alpha)$$
$$omega=Pdx+Qdy=e^{-x^2+y^2}cos(2xy)dx+e^{-x^2+y^2}sin(2xy)$$
with $alphainmathbb{R}$, and $a$ they don't say anything about it. However I have to use this to calculate:
$$int_0^{infty}e^{-t^2}cos(2alpha t)dt$$
But since $Gamma$ is a closed curve then $int_{Gamma}omega= 0$.
However how do I parametrize this and what is the intuition behind it?
My attempt:
when trying to parametrize I said: $Gamma = ABcup BCcup CDcup DA$
and so:
$AB:$
$$x(t) = t$$
$$y(t) = 0$$
$tin [0,a]$
$BC:$
$$x(t)=a$$
$$y(t) = t$$
$tin [0,alpha ]$
$CD:$
$$x(t)=a-t$$
$$y(t)=alpha$$
$tin [0,a]$
$DA:$
$$x(t)=0$$
$$y(t) = alpha -t$$
$tin [0,alpha]$
Now how do I construct the integral?
integration parametrization
$endgroup$
add a comment |
$begingroup$
Let $Gamma=ABCD$, where:
$$A(0,0),B(a,0),C(a,alpha),D(0,alpha)$$
$$omega=Pdx+Qdy=e^{-x^2+y^2}cos(2xy)dx+e^{-x^2+y^2}sin(2xy)$$
with $alphainmathbb{R}$, and $a$ they don't say anything about it. However I have to use this to calculate:
$$int_0^{infty}e^{-t^2}cos(2alpha t)dt$$
But since $Gamma$ is a closed curve then $int_{Gamma}omega= 0$.
However how do I parametrize this and what is the intuition behind it?
My attempt:
when trying to parametrize I said: $Gamma = ABcup BCcup CDcup DA$
and so:
$AB:$
$$x(t) = t$$
$$y(t) = 0$$
$tin [0,a]$
$BC:$
$$x(t)=a$$
$$y(t) = t$$
$tin [0,alpha ]$
$CD:$
$$x(t)=a-t$$
$$y(t)=alpha$$
$tin [0,a]$
$DA:$
$$x(t)=0$$
$$y(t) = alpha -t$$
$tin [0,alpha]$
Now how do I construct the integral?
integration parametrization
$endgroup$
add a comment |
$begingroup$
Let $Gamma=ABCD$, where:
$$A(0,0),B(a,0),C(a,alpha),D(0,alpha)$$
$$omega=Pdx+Qdy=e^{-x^2+y^2}cos(2xy)dx+e^{-x^2+y^2}sin(2xy)$$
with $alphainmathbb{R}$, and $a$ they don't say anything about it. However I have to use this to calculate:
$$int_0^{infty}e^{-t^2}cos(2alpha t)dt$$
But since $Gamma$ is a closed curve then $int_{Gamma}omega= 0$.
However how do I parametrize this and what is the intuition behind it?
My attempt:
when trying to parametrize I said: $Gamma = ABcup BCcup CDcup DA$
and so:
$AB:$
$$x(t) = t$$
$$y(t) = 0$$
$tin [0,a]$
$BC:$
$$x(t)=a$$
$$y(t) = t$$
$tin [0,alpha ]$
$CD:$
$$x(t)=a-t$$
$$y(t)=alpha$$
$tin [0,a]$
$DA:$
$$x(t)=0$$
$$y(t) = alpha -t$$
$tin [0,alpha]$
Now how do I construct the integral?
integration parametrization
$endgroup$
Let $Gamma=ABCD$, where:
$$A(0,0),B(a,0),C(a,alpha),D(0,alpha)$$
$$omega=Pdx+Qdy=e^{-x^2+y^2}cos(2xy)dx+e^{-x^2+y^2}sin(2xy)$$
with $alphainmathbb{R}$, and $a$ they don't say anything about it. However I have to use this to calculate:
$$int_0^{infty}e^{-t^2}cos(2alpha t)dt$$
But since $Gamma$ is a closed curve then $int_{Gamma}omega= 0$.
However how do I parametrize this and what is the intuition behind it?
My attempt:
when trying to parametrize I said: $Gamma = ABcup BCcup CDcup DA$
and so:
$AB:$
$$x(t) = t$$
$$y(t) = 0$$
$tin [0,a]$
$BC:$
$$x(t)=a$$
$$y(t) = t$$
$tin [0,alpha ]$
$CD:$
$$x(t)=a-t$$
$$y(t)=alpha$$
$tin [0,a]$
$DA:$
$$x(t)=0$$
$$y(t) = alpha -t$$
$tin [0,alpha]$
Now how do I construct the integral?
integration parametrization
integration parametrization
edited Jan 13 at 7:21
C. Cristi
asked Jan 13 at 7:05


C. CristiC. Cristi
1,629218
1,629218
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I solved it myself actually:
Using that parametrization you get that:
$$0=int_{Gamma}omega=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt-int_0^ae^{-t^2+alpha^2}cos(2alpha t)dt$$
If we note that desired integral with $I$. We can see that from the last expression we get:
$$Ie^{alpha^2}=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt$$
Letting $atoinfty$
We get:
$$boxed{I=frac {sqrt{pi}}{2}e^{-alpha^2}}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071762%2frectangle-paramtrization%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I solved it myself actually:
Using that parametrization you get that:
$$0=int_{Gamma}omega=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt-int_0^ae^{-t^2+alpha^2}cos(2alpha t)dt$$
If we note that desired integral with $I$. We can see that from the last expression we get:
$$Ie^{alpha^2}=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt$$
Letting $atoinfty$
We get:
$$boxed{I=frac {sqrt{pi}}{2}e^{-alpha^2}}$$
$endgroup$
add a comment |
$begingroup$
I solved it myself actually:
Using that parametrization you get that:
$$0=int_{Gamma}omega=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt-int_0^ae^{-t^2+alpha^2}cos(2alpha t)dt$$
If we note that desired integral with $I$. We can see that from the last expression we get:
$$Ie^{alpha^2}=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt$$
Letting $atoinfty$
We get:
$$boxed{I=frac {sqrt{pi}}{2}e^{-alpha^2}}$$
$endgroup$
add a comment |
$begingroup$
I solved it myself actually:
Using that parametrization you get that:
$$0=int_{Gamma}omega=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt-int_0^ae^{-t^2+alpha^2}cos(2alpha t)dt$$
If we note that desired integral with $I$. We can see that from the last expression we get:
$$Ie^{alpha^2}=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt$$
Letting $atoinfty$
We get:
$$boxed{I=frac {sqrt{pi}}{2}e^{-alpha^2}}$$
$endgroup$
I solved it myself actually:
Using that parametrization you get that:
$$0=int_{Gamma}omega=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt-int_0^ae^{-t^2+alpha^2}cos(2alpha t)dt$$
If we note that desired integral with $I$. We can see that from the last expression we get:
$$Ie^{alpha^2}=int_{0}^{a}e^{-t^2}dt+int_0^{alpha}e^{-a^2+t^2}cos(2at)dt$$
Letting $atoinfty$
We get:
$$boxed{I=frac {sqrt{pi}}{2}e^{-alpha^2}}$$
answered Jan 13 at 7:39


C. CristiC. Cristi
1,629218
1,629218
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071762%2frectangle-paramtrization%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown