Find matrices that commute with $operatorname{Diag}(1,1,-1)$.












6












$begingroup$



Let, $A = begin{bmatrix} 1 & 0 & 0 \ 0 & 1& 0 \ 0 & 0 & -1 end{bmatrix}$ . Then find $ S= {B in M_{3times3}(Bbb R) :AB=BA}$ .




My attempt:



Bare computation yielded ${Bin M_{3times3}(Bbb R) : B = begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4& 0 \ 0 & 0 & c_5 end{bmatrix} , c_1,c_2,c_3,c_4,c_5 in Bbb R} subseteq S$ but I am having trouble showing the reverse inclusion (if it is true!).



I was also tempted to use eigenvalues and eigenspaces to reach some conclusion by looking at the diagonal form of $A$ (displaying its eigenvalues), but can't get my way through!



Thanks in advance for help.










share|cite|improve this question











$endgroup$

















    6












    $begingroup$



    Let, $A = begin{bmatrix} 1 & 0 & 0 \ 0 & 1& 0 \ 0 & 0 & -1 end{bmatrix}$ . Then find $ S= {B in M_{3times3}(Bbb R) :AB=BA}$ .




    My attempt:



    Bare computation yielded ${Bin M_{3times3}(Bbb R) : B = begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4& 0 \ 0 & 0 & c_5 end{bmatrix} , c_1,c_2,c_3,c_4,c_5 in Bbb R} subseteq S$ but I am having trouble showing the reverse inclusion (if it is true!).



    I was also tempted to use eigenvalues and eigenspaces to reach some conclusion by looking at the diagonal form of $A$ (displaying its eigenvalues), but can't get my way through!



    Thanks in advance for help.










    share|cite|improve this question











    $endgroup$















      6












      6








      6





      $begingroup$



      Let, $A = begin{bmatrix} 1 & 0 & 0 \ 0 & 1& 0 \ 0 & 0 & -1 end{bmatrix}$ . Then find $ S= {B in M_{3times3}(Bbb R) :AB=BA}$ .




      My attempt:



      Bare computation yielded ${Bin M_{3times3}(Bbb R) : B = begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4& 0 \ 0 & 0 & c_5 end{bmatrix} , c_1,c_2,c_3,c_4,c_5 in Bbb R} subseteq S$ but I am having trouble showing the reverse inclusion (if it is true!).



      I was also tempted to use eigenvalues and eigenspaces to reach some conclusion by looking at the diagonal form of $A$ (displaying its eigenvalues), but can't get my way through!



      Thanks in advance for help.










      share|cite|improve this question











      $endgroup$





      Let, $A = begin{bmatrix} 1 & 0 & 0 \ 0 & 1& 0 \ 0 & 0 & -1 end{bmatrix}$ . Then find $ S= {B in M_{3times3}(Bbb R) :AB=BA}$ .




      My attempt:



      Bare computation yielded ${Bin M_{3times3}(Bbb R) : B = begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4& 0 \ 0 & 0 & c_5 end{bmatrix} , c_1,c_2,c_3,c_4,c_5 in Bbb R} subseteq S$ but I am having trouble showing the reverse inclusion (if it is true!).



      I was also tempted to use eigenvalues and eigenspaces to reach some conclusion by looking at the diagonal form of $A$ (displaying its eigenvalues), but can't get my way through!



      Thanks in advance for help.







      linear-algebra matrices vector-spaces eigenvalues-eigenvectors linear-transformations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 9:20









      José Carlos Santos

      167k22132235




      167k22132235










      asked Jun 23 '18 at 10:22









      CoherentCoherent

      1,147623




      1,147623






















          2 Answers
          2






          active

          oldest

          votes


















          8












          $begingroup$

          Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Can you give some idea with the Eigen spaces and Eigen values.
            $endgroup$
            – Coherent
            Jun 23 '18 at 10:30










          • $begingroup$
            The block nature should make it obvious what the eigenspaces are..
            $endgroup$
            – Cameron Williams
            Jun 23 '18 at 10:34










          • $begingroup$
            I meant some arguments by Eigen spaces and Eigen values
            $endgroup$
            – Coherent
            Jun 23 '18 at 10:46










          • $begingroup$
            @ThatIs Right now, I can't think of any.
            $endgroup$
            – José Carlos Santos
            Jun 23 '18 at 10:47










          • $begingroup$
            @JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
            $endgroup$
            – Coherent
            Oct 7 '18 at 16:31



















          0












          $begingroup$

          Opposed to the direct computation, this is an approach via eigenspaces.



          Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .



          Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .



          Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.



          A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.



          So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$



          And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2829310%2ffind-matrices-that-commute-with-operatornamediag1-1-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            8












            $begingroup$

            Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Can you give some idea with the Eigen spaces and Eigen values.
              $endgroup$
              – Coherent
              Jun 23 '18 at 10:30










            • $begingroup$
              The block nature should make it obvious what the eigenspaces are..
              $endgroup$
              – Cameron Williams
              Jun 23 '18 at 10:34










            • $begingroup$
              I meant some arguments by Eigen spaces and Eigen values
              $endgroup$
              – Coherent
              Jun 23 '18 at 10:46










            • $begingroup$
              @ThatIs Right now, I can't think of any.
              $endgroup$
              – José Carlos Santos
              Jun 23 '18 at 10:47










            • $begingroup$
              @JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
              $endgroup$
              – Coherent
              Oct 7 '18 at 16:31
















            8












            $begingroup$

            Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Can you give some idea with the Eigen spaces and Eigen values.
              $endgroup$
              – Coherent
              Jun 23 '18 at 10:30










            • $begingroup$
              The block nature should make it obvious what the eigenspaces are..
              $endgroup$
              – Cameron Williams
              Jun 23 '18 at 10:34










            • $begingroup$
              I meant some arguments by Eigen spaces and Eigen values
              $endgroup$
              – Coherent
              Jun 23 '18 at 10:46










            • $begingroup$
              @ThatIs Right now, I can't think of any.
              $endgroup$
              – José Carlos Santos
              Jun 23 '18 at 10:47










            • $begingroup$
              @JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
              $endgroup$
              – Coherent
              Oct 7 '18 at 16:31














            8












            8








            8





            $begingroup$

            Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.






            share|cite|improve this answer









            $endgroup$



            Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jun 23 '18 at 10:29









            José Carlos SantosJosé Carlos Santos

            167k22132235




            167k22132235












            • $begingroup$
              Can you give some idea with the Eigen spaces and Eigen values.
              $endgroup$
              – Coherent
              Jun 23 '18 at 10:30










            • $begingroup$
              The block nature should make it obvious what the eigenspaces are..
              $endgroup$
              – Cameron Williams
              Jun 23 '18 at 10:34










            • $begingroup$
              I meant some arguments by Eigen spaces and Eigen values
              $endgroup$
              – Coherent
              Jun 23 '18 at 10:46










            • $begingroup$
              @ThatIs Right now, I can't think of any.
              $endgroup$
              – José Carlos Santos
              Jun 23 '18 at 10:47










            • $begingroup$
              @JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
              $endgroup$
              – Coherent
              Oct 7 '18 at 16:31


















            • $begingroup$
              Can you give some idea with the Eigen spaces and Eigen values.
              $endgroup$
              – Coherent
              Jun 23 '18 at 10:30










            • $begingroup$
              The block nature should make it obvious what the eigenspaces are..
              $endgroup$
              – Cameron Williams
              Jun 23 '18 at 10:34










            • $begingroup$
              I meant some arguments by Eigen spaces and Eigen values
              $endgroup$
              – Coherent
              Jun 23 '18 at 10:46










            • $begingroup$
              @ThatIs Right now, I can't think of any.
              $endgroup$
              – José Carlos Santos
              Jun 23 '18 at 10:47










            • $begingroup$
              @JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
              $endgroup$
              – Coherent
              Oct 7 '18 at 16:31
















            $begingroup$
            Can you give some idea with the Eigen spaces and Eigen values.
            $endgroup$
            – Coherent
            Jun 23 '18 at 10:30




            $begingroup$
            Can you give some idea with the Eigen spaces and Eigen values.
            $endgroup$
            – Coherent
            Jun 23 '18 at 10:30












            $begingroup$
            The block nature should make it obvious what the eigenspaces are..
            $endgroup$
            – Cameron Williams
            Jun 23 '18 at 10:34




            $begingroup$
            The block nature should make it obvious what the eigenspaces are..
            $endgroup$
            – Cameron Williams
            Jun 23 '18 at 10:34












            $begingroup$
            I meant some arguments by Eigen spaces and Eigen values
            $endgroup$
            – Coherent
            Jun 23 '18 at 10:46




            $begingroup$
            I meant some arguments by Eigen spaces and Eigen values
            $endgroup$
            – Coherent
            Jun 23 '18 at 10:46












            $begingroup$
            @ThatIs Right now, I can't think of any.
            $endgroup$
            – José Carlos Santos
            Jun 23 '18 at 10:47




            $begingroup$
            @ThatIs Right now, I can't think of any.
            $endgroup$
            – José Carlos Santos
            Jun 23 '18 at 10:47












            $begingroup$
            @JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
            $endgroup$
            – Coherent
            Oct 7 '18 at 16:31




            $begingroup$
            @JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
            $endgroup$
            – Coherent
            Oct 7 '18 at 16:31











            0












            $begingroup$

            Opposed to the direct computation, this is an approach via eigenspaces.



            Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .



            Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .



            Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.



            A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.



            So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$



            And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Opposed to the direct computation, this is an approach via eigenspaces.



              Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .



              Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .



              Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.



              A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.



              So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$



              And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Opposed to the direct computation, this is an approach via eigenspaces.



                Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .



                Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .



                Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.



                A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.



                So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$



                And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$






                share|cite|improve this answer









                $endgroup$



                Opposed to the direct computation, this is an approach via eigenspaces.



                Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .



                Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .



                Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.



                A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.



                So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$



                And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Oct 7 '18 at 16:29









                CoherentCoherent

                1,147623




                1,147623






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2829310%2ffind-matrices-that-commute-with-operatornamediag1-1-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith