Find matrices that commute with $operatorname{Diag}(1,1,-1)$.
$begingroup$
Let, $A = begin{bmatrix} 1 & 0 & 0 \ 0 & 1& 0 \ 0 & 0 & -1 end{bmatrix}$ . Then find $ S= {B in M_{3times3}(Bbb R) :AB=BA}$ .
My attempt:
Bare computation yielded ${Bin M_{3times3}(Bbb R) : B = begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4& 0 \ 0 & 0 & c_5 end{bmatrix} , c_1,c_2,c_3,c_4,c_5 in Bbb R} subseteq S$ but I am having trouble showing the reverse inclusion (if it is true!).
I was also tempted to use eigenvalues and eigenspaces to reach some conclusion by looking at the diagonal form of $A$ (displaying its eigenvalues), but can't get my way through!
Thanks in advance for help.
linear-algebra matrices vector-spaces eigenvalues-eigenvectors linear-transformations
$endgroup$
add a comment |
$begingroup$
Let, $A = begin{bmatrix} 1 & 0 & 0 \ 0 & 1& 0 \ 0 & 0 & -1 end{bmatrix}$ . Then find $ S= {B in M_{3times3}(Bbb R) :AB=BA}$ .
My attempt:
Bare computation yielded ${Bin M_{3times3}(Bbb R) : B = begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4& 0 \ 0 & 0 & c_5 end{bmatrix} , c_1,c_2,c_3,c_4,c_5 in Bbb R} subseteq S$ but I am having trouble showing the reverse inclusion (if it is true!).
I was also tempted to use eigenvalues and eigenspaces to reach some conclusion by looking at the diagonal form of $A$ (displaying its eigenvalues), but can't get my way through!
Thanks in advance for help.
linear-algebra matrices vector-spaces eigenvalues-eigenvectors linear-transformations
$endgroup$
add a comment |
$begingroup$
Let, $A = begin{bmatrix} 1 & 0 & 0 \ 0 & 1& 0 \ 0 & 0 & -1 end{bmatrix}$ . Then find $ S= {B in M_{3times3}(Bbb R) :AB=BA}$ .
My attempt:
Bare computation yielded ${Bin M_{3times3}(Bbb R) : B = begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4& 0 \ 0 & 0 & c_5 end{bmatrix} , c_1,c_2,c_3,c_4,c_5 in Bbb R} subseteq S$ but I am having trouble showing the reverse inclusion (if it is true!).
I was also tempted to use eigenvalues and eigenspaces to reach some conclusion by looking at the diagonal form of $A$ (displaying its eigenvalues), but can't get my way through!
Thanks in advance for help.
linear-algebra matrices vector-spaces eigenvalues-eigenvectors linear-transformations
$endgroup$
Let, $A = begin{bmatrix} 1 & 0 & 0 \ 0 & 1& 0 \ 0 & 0 & -1 end{bmatrix}$ . Then find $ S= {B in M_{3times3}(Bbb R) :AB=BA}$ .
My attempt:
Bare computation yielded ${Bin M_{3times3}(Bbb R) : B = begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4& 0 \ 0 & 0 & c_5 end{bmatrix} , c_1,c_2,c_3,c_4,c_5 in Bbb R} subseteq S$ but I am having trouble showing the reverse inclusion (if it is true!).
I was also tempted to use eigenvalues and eigenspaces to reach some conclusion by looking at the diagonal form of $A$ (displaying its eigenvalues), but can't get my way through!
Thanks in advance for help.
linear-algebra matrices vector-spaces eigenvalues-eigenvectors linear-transformations
linear-algebra matrices vector-spaces eigenvalues-eigenvectors linear-transformations
edited Jan 23 at 9:20


José Carlos Santos
167k22132235
167k22132235
asked Jun 23 '18 at 10:22


CoherentCoherent
1,147623
1,147623
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.
$endgroup$
$begingroup$
Can you give some idea with the Eigen spaces and Eigen values.
$endgroup$
– Coherent
Jun 23 '18 at 10:30
$begingroup$
The block nature should make it obvious what the eigenspaces are..
$endgroup$
– Cameron Williams
Jun 23 '18 at 10:34
$begingroup$
I meant some arguments by Eigen spaces and Eigen values
$endgroup$
– Coherent
Jun 23 '18 at 10:46
$begingroup$
@ThatIs Right now, I can't think of any.
$endgroup$
– José Carlos Santos
Jun 23 '18 at 10:47
$begingroup$
@JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
$endgroup$
– Coherent
Oct 7 '18 at 16:31
add a comment |
$begingroup$
Opposed to the direct computation, this is an approach via eigenspaces.
Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .
Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .
Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.
A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.
So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$
And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2829310%2ffind-matrices-that-commute-with-operatornamediag1-1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.
$endgroup$
$begingroup$
Can you give some idea with the Eigen spaces and Eigen values.
$endgroup$
– Coherent
Jun 23 '18 at 10:30
$begingroup$
The block nature should make it obvious what the eigenspaces are..
$endgroup$
– Cameron Williams
Jun 23 '18 at 10:34
$begingroup$
I meant some arguments by Eigen spaces and Eigen values
$endgroup$
– Coherent
Jun 23 '18 at 10:46
$begingroup$
@ThatIs Right now, I can't think of any.
$endgroup$
– José Carlos Santos
Jun 23 '18 at 10:47
$begingroup$
@JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
$endgroup$
– Coherent
Oct 7 '18 at 16:31
add a comment |
$begingroup$
Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.
$endgroup$
$begingroup$
Can you give some idea with the Eigen spaces and Eigen values.
$endgroup$
– Coherent
Jun 23 '18 at 10:30
$begingroup$
The block nature should make it obvious what the eigenspaces are..
$endgroup$
– Cameron Williams
Jun 23 '18 at 10:34
$begingroup$
I meant some arguments by Eigen spaces and Eigen values
$endgroup$
– Coherent
Jun 23 '18 at 10:46
$begingroup$
@ThatIs Right now, I can't think of any.
$endgroup$
– José Carlos Santos
Jun 23 '18 at 10:47
$begingroup$
@JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
$endgroup$
– Coherent
Oct 7 '18 at 16:31
add a comment |
$begingroup$
Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.
$endgroup$
Yes, the reverse inclusion is true. Note that if$$B=begin{pmatrix}b_{11}&b_{12}&b_{13}\b_{21}&b_{22}&b_{23}\b_{31}&b_{32}&b_{33}end{pmatrix},$$then$$AB-BA=begin{pmatrix}0&0&2b_{13}\0&0&2b_{23}\-2b_{31}&-2b_{32}&0end{pmatrix}.$$Therefore, $AB=BA$ if and only if $b_{13}=b_{23}=b_{31}=b_{32}=0$.
answered Jun 23 '18 at 10:29


José Carlos SantosJosé Carlos Santos
167k22132235
167k22132235
$begingroup$
Can you give some idea with the Eigen spaces and Eigen values.
$endgroup$
– Coherent
Jun 23 '18 at 10:30
$begingroup$
The block nature should make it obvious what the eigenspaces are..
$endgroup$
– Cameron Williams
Jun 23 '18 at 10:34
$begingroup$
I meant some arguments by Eigen spaces and Eigen values
$endgroup$
– Coherent
Jun 23 '18 at 10:46
$begingroup$
@ThatIs Right now, I can't think of any.
$endgroup$
– José Carlos Santos
Jun 23 '18 at 10:47
$begingroup$
@JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
$endgroup$
– Coherent
Oct 7 '18 at 16:31
add a comment |
$begingroup$
Can you give some idea with the Eigen spaces and Eigen values.
$endgroup$
– Coherent
Jun 23 '18 at 10:30
$begingroup$
The block nature should make it obvious what the eigenspaces are..
$endgroup$
– Cameron Williams
Jun 23 '18 at 10:34
$begingroup$
I meant some arguments by Eigen spaces and Eigen values
$endgroup$
– Coherent
Jun 23 '18 at 10:46
$begingroup$
@ThatIs Right now, I can't think of any.
$endgroup$
– José Carlos Santos
Jun 23 '18 at 10:47
$begingroup$
@JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
$endgroup$
– Coherent
Oct 7 '18 at 16:31
$begingroup$
Can you give some idea with the Eigen spaces and Eigen values.
$endgroup$
– Coherent
Jun 23 '18 at 10:30
$begingroup$
Can you give some idea with the Eigen spaces and Eigen values.
$endgroup$
– Coherent
Jun 23 '18 at 10:30
$begingroup$
The block nature should make it obvious what the eigenspaces are..
$endgroup$
– Cameron Williams
Jun 23 '18 at 10:34
$begingroup$
The block nature should make it obvious what the eigenspaces are..
$endgroup$
– Cameron Williams
Jun 23 '18 at 10:34
$begingroup$
I meant some arguments by Eigen spaces and Eigen values
$endgroup$
– Coherent
Jun 23 '18 at 10:46
$begingroup$
I meant some arguments by Eigen spaces and Eigen values
$endgroup$
– Coherent
Jun 23 '18 at 10:46
$begingroup$
@ThatIs Right now, I can't think of any.
$endgroup$
– José Carlos Santos
Jun 23 '18 at 10:47
$begingroup$
@ThatIs Right now, I can't think of any.
$endgroup$
– José Carlos Santos
Jun 23 '18 at 10:47
$begingroup$
@JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
$endgroup$
– Coherent
Oct 7 '18 at 16:31
$begingroup$
@JoséCarlosSantos I've tried to give an argument via Eigen spaces and all.
$endgroup$
– Coherent
Oct 7 '18 at 16:31
add a comment |
$begingroup$
Opposed to the direct computation, this is an approach via eigenspaces.
Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .
Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .
Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.
A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.
So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$
And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$
$endgroup$
add a comment |
$begingroup$
Opposed to the direct computation, this is an approach via eigenspaces.
Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .
Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .
Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.
A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.
So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$
And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$
$endgroup$
add a comment |
$begingroup$
Opposed to the direct computation, this is an approach via eigenspaces.
Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .
Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .
Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.
A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.
So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$
And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$
$endgroup$
Opposed to the direct computation, this is an approach via eigenspaces.
Let $M,N$ be any two matrices such that $MN=NM$. Let $c$ be an eigenvalue of $M$ and let's call $E_c$ to be the eigenspace associated to the eigen value $c$ .
Then for any $v in E_c$ , $M(Nv)=(MN)v=(NM)v=N(Mv)=N(cv)=c(Nv)$ . So we get that, $N(E_c) subset E_c$ .
Now back to our given problem. $A$ clearly has two eigenvalues : 1 and -1 with the former having multiplicity 2 and the latter having multiplicity 1.
A routine computation shows that, $E_1 = span{(1,0,0),(0,1,0)}$ and $E_{-1} = span{(0,0,1)}$.
So we get that, $B(1,0,0) in E_1, B(0,1,0) in E_1, B(0,0,1) in E_{-1} $ i.e. $exists c_1, dots ,c_5in Bbb R$ such that ,$$B(1,0,0)=c_1(1,0,0)+c_2 (0,1,0) + 0(0,0,1)$$ $$B(0,1,0)=c_3(1,0,0)+c_4 (0,1,0)+0(0,0,1)$$ $$B(0,0,1)=0(1,0,0)+0 (0,1,0)+c_5(0,0,1)$$
And hence, in the standard basis, we get, $$B=begin{bmatrix} c_1 & c_2 & 0 \ c_3 & c_4 & 0 \ 0 & 0 & c_5 end{bmatrix}$$
answered Oct 7 '18 at 16:29


CoherentCoherent
1,147623
1,147623
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2829310%2ffind-matrices-that-commute-with-operatornamediag1-1-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown