Computing the solution of a recurrence relation
up vote
0
down vote
favorite
Let $y_k=dfrac{16}{3}y_{k-1}-dfrac{5}{3}y_{k-2}$
with $y_0=1$ and $y_1=dfrac{1}{2}$ for $k geq 2, k in mathbb{N}$.
To find the solution $lbrace y_k rbrace_{k in mathbb{N_0}}$ I used:
Firstly, I computed it for $k=2$:
$y_2=dfrac{16}{3}dfrac{1}{2}-dfrac{5}{3}1=1$
What has to be done next? Induction isn't helpful here.
I don't see how can it be found for $lbrace y_k rbrace_{k in mathbb{N_0}}$.
recurrence-relations
add a comment |
up vote
0
down vote
favorite
Let $y_k=dfrac{16}{3}y_{k-1}-dfrac{5}{3}y_{k-2}$
with $y_0=1$ and $y_1=dfrac{1}{2}$ for $k geq 2, k in mathbb{N}$.
To find the solution $lbrace y_k rbrace_{k in mathbb{N_0}}$ I used:
Firstly, I computed it for $k=2$:
$y_2=dfrac{16}{3}dfrac{1}{2}-dfrac{5}{3}1=1$
What has to be done next? Induction isn't helpful here.
I don't see how can it be found for $lbrace y_k rbrace_{k in mathbb{N_0}}$.
recurrence-relations
3
There's a whole method for solving linear recurrences. Try opening your notebook
– Jakobian
15 hours ago
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $y_k=dfrac{16}{3}y_{k-1}-dfrac{5}{3}y_{k-2}$
with $y_0=1$ and $y_1=dfrac{1}{2}$ for $k geq 2, k in mathbb{N}$.
To find the solution $lbrace y_k rbrace_{k in mathbb{N_0}}$ I used:
Firstly, I computed it for $k=2$:
$y_2=dfrac{16}{3}dfrac{1}{2}-dfrac{5}{3}1=1$
What has to be done next? Induction isn't helpful here.
I don't see how can it be found for $lbrace y_k rbrace_{k in mathbb{N_0}}$.
recurrence-relations
Let $y_k=dfrac{16}{3}y_{k-1}-dfrac{5}{3}y_{k-2}$
with $y_0=1$ and $y_1=dfrac{1}{2}$ for $k geq 2, k in mathbb{N}$.
To find the solution $lbrace y_k rbrace_{k in mathbb{N_0}}$ I used:
Firstly, I computed it for $k=2$:
$y_2=dfrac{16}{3}dfrac{1}{2}-dfrac{5}{3}1=1$
What has to be done next? Induction isn't helpful here.
I don't see how can it be found for $lbrace y_k rbrace_{k in mathbb{N_0}}$.
recurrence-relations
recurrence-relations
edited 14 hours ago
Yadati Kiran
348110
348110
asked 15 hours ago
Olsgur
323
323
3
There's a whole method for solving linear recurrences. Try opening your notebook
– Jakobian
15 hours ago
add a comment |
3
There's a whole method for solving linear recurrences. Try opening your notebook
– Jakobian
15 hours ago
3
3
There's a whole method for solving linear recurrences. Try opening your notebook
– Jakobian
15 hours ago
There's a whole method for solving linear recurrences. Try opening your notebook
– Jakobian
15 hours ago
add a comment |
1 Answer
1
active
oldest
votes
up vote
-1
down vote
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
$$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$
Solution details:
Char. equation is
$${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
$$t_1=5,quad t_2=frac13$$
Then solution is
$$y_k=A,5^k+B,left(frac13right)^k$$
From initial conditions
$$A,5^0+B,left(frac13right)^0=1,\
A,5^1+B,left(frac13right)^1=frac12$$
$Rightarrow$
$$A=frac{1}{28},quad B=frac{27}{28}$$
$Rightarrow$
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
see for example https://www.youtube.com/watch?v=aHw7hAAjbD0
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
-1
down vote
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
$$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$
Solution details:
Char. equation is
$${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
$$t_1=5,quad t_2=frac13$$
Then solution is
$$y_k=A,5^k+B,left(frac13right)^k$$
From initial conditions
$$A,5^0+B,left(frac13right)^0=1,\
A,5^1+B,left(frac13right)^1=frac12$$
$Rightarrow$
$$A=frac{1}{28},quad B=frac{27}{28}$$
$Rightarrow$
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
see for example https://www.youtube.com/watch?v=aHw7hAAjbD0
add a comment |
up vote
-1
down vote
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
$$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$
Solution details:
Char. equation is
$${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
$$t_1=5,quad t_2=frac13$$
Then solution is
$$y_k=A,5^k+B,left(frac13right)^k$$
From initial conditions
$$A,5^0+B,left(frac13right)^0=1,\
A,5^1+B,left(frac13right)^1=frac12$$
$Rightarrow$
$$A=frac{1}{28},quad B=frac{27}{28}$$
$Rightarrow$
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
see for example https://www.youtube.com/watch?v=aHw7hAAjbD0
add a comment |
up vote
-1
down vote
up vote
-1
down vote
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
$$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$
Solution details:
Char. equation is
$${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
$$t_1=5,quad t_2=frac13$$
Then solution is
$$y_k=A,5^k+B,left(frac13right)^k$$
From initial conditions
$$A,5^0+B,left(frac13right)^0=1,\
A,5^1+B,left(frac13right)^1=frac12$$
$Rightarrow$
$$A=frac{1}{28},quad B=frac{27}{28}$$
$Rightarrow$
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
see for example https://www.youtube.com/watch?v=aHw7hAAjbD0
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
$$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$
Solution details:
Char. equation is
$${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
$$t_1=5,quad t_2=frac13$$
Then solution is
$$y_k=A,5^k+B,left(frac13right)^k$$
From initial conditions
$$A,5^0+B,left(frac13right)^0=1,\
A,5^1+B,left(frac13right)^1=frac12$$
$Rightarrow$
$$A=frac{1}{28},quad B=frac{27}{28}$$
$Rightarrow$
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$
see for example https://www.youtube.com/watch?v=aHw7hAAjbD0
edited 4 hours ago
answered 15 hours ago
Aleksas Domarkas
7085
7085
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004137%2fcomputing-the-solution-of-a-recurrence-relation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
There's a whole method for solving linear recurrences. Try opening your notebook
– Jakobian
15 hours ago