Computing the solution of a recurrence relation











up vote
0
down vote

favorite












Let $y_k=dfrac{16}{3}y_{k-1}-dfrac{5}{3}y_{k-2}$



with $y_0=1$ and $y_1=dfrac{1}{2}$ for $k geq 2, k in mathbb{N}$.



To find the solution $lbrace y_k rbrace_{k in mathbb{N_0}}$ I used:



Firstly, I computed it for $k=2$:



$y_2=dfrac{16}{3}dfrac{1}{2}-dfrac{5}{3}1=1$



What has to be done next? Induction isn't helpful here.



I don't see how can it be found for $lbrace y_k rbrace_{k in mathbb{N_0}}$.










share|cite|improve this question




















  • 3




    There's a whole method for solving linear recurrences. Try opening your notebook
    – Jakobian
    15 hours ago















up vote
0
down vote

favorite












Let $y_k=dfrac{16}{3}y_{k-1}-dfrac{5}{3}y_{k-2}$



with $y_0=1$ and $y_1=dfrac{1}{2}$ for $k geq 2, k in mathbb{N}$.



To find the solution $lbrace y_k rbrace_{k in mathbb{N_0}}$ I used:



Firstly, I computed it for $k=2$:



$y_2=dfrac{16}{3}dfrac{1}{2}-dfrac{5}{3}1=1$



What has to be done next? Induction isn't helpful here.



I don't see how can it be found for $lbrace y_k rbrace_{k in mathbb{N_0}}$.










share|cite|improve this question




















  • 3




    There's a whole method for solving linear recurrences. Try opening your notebook
    – Jakobian
    15 hours ago













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $y_k=dfrac{16}{3}y_{k-1}-dfrac{5}{3}y_{k-2}$



with $y_0=1$ and $y_1=dfrac{1}{2}$ for $k geq 2, k in mathbb{N}$.



To find the solution $lbrace y_k rbrace_{k in mathbb{N_0}}$ I used:



Firstly, I computed it for $k=2$:



$y_2=dfrac{16}{3}dfrac{1}{2}-dfrac{5}{3}1=1$



What has to be done next? Induction isn't helpful here.



I don't see how can it be found for $lbrace y_k rbrace_{k in mathbb{N_0}}$.










share|cite|improve this question















Let $y_k=dfrac{16}{3}y_{k-1}-dfrac{5}{3}y_{k-2}$



with $y_0=1$ and $y_1=dfrac{1}{2}$ for $k geq 2, k in mathbb{N}$.



To find the solution $lbrace y_k rbrace_{k in mathbb{N_0}}$ I used:



Firstly, I computed it for $k=2$:



$y_2=dfrac{16}{3}dfrac{1}{2}-dfrac{5}{3}1=1$



What has to be done next? Induction isn't helpful here.



I don't see how can it be found for $lbrace y_k rbrace_{k in mathbb{N_0}}$.







recurrence-relations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 14 hours ago









Yadati Kiran

348110




348110










asked 15 hours ago









Olsgur

323




323








  • 3




    There's a whole method for solving linear recurrences. Try opening your notebook
    – Jakobian
    15 hours ago














  • 3




    There's a whole method for solving linear recurrences. Try opening your notebook
    – Jakobian
    15 hours ago








3




3




There's a whole method for solving linear recurrences. Try opening your notebook
– Jakobian
15 hours ago




There's a whole method for solving linear recurrences. Try opening your notebook
– Jakobian
15 hours ago










1 Answer
1






active

oldest

votes

















up vote
-1
down vote













$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



$$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$



Solution details:



Char. equation is
$${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
$$t_1=5,quad t_2=frac13$$
Then solution is
$$y_k=A,5^k+B,left(frac13right)^k$$
From initial conditions
$$A,5^0+B,left(frac13right)^0=1,\
A,5^1+B,left(frac13right)^1=frac12$$

$Rightarrow$
$$A=frac{1}{28},quad B=frac{27}{28}$$
$Rightarrow$
$$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



see for example https://www.youtube.com/watch?v=aHw7hAAjbD0






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004137%2fcomputing-the-solution-of-a-recurrence-relation%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    -1
    down vote













    $$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



    $$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$



    Solution details:



    Char. equation is
    $${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
    $$t_1=5,quad t_2=frac13$$
    Then solution is
    $$y_k=A,5^k+B,left(frac13right)^k$$
    From initial conditions
    $$A,5^0+B,left(frac13right)^0=1,\
    A,5^1+B,left(frac13right)^1=frac12$$

    $Rightarrow$
    $$A=frac{1}{28},quad B=frac{27}{28}$$
    $Rightarrow$
    $$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



    see for example https://www.youtube.com/watch?v=aHw7hAAjbD0






    share|cite|improve this answer



























      up vote
      -1
      down vote













      $$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



      $$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$



      Solution details:



      Char. equation is
      $${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
      $$t_1=5,quad t_2=frac13$$
      Then solution is
      $$y_k=A,5^k+B,left(frac13right)^k$$
      From initial conditions
      $$A,5^0+B,left(frac13right)^0=1,\
      A,5^1+B,left(frac13right)^1=frac12$$

      $Rightarrow$
      $$A=frac{1}{28},quad B=frac{27}{28}$$
      $Rightarrow$
      $$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



      see for example https://www.youtube.com/watch?v=aHw7hAAjbD0






      share|cite|improve this answer

























        up vote
        -1
        down vote










        up vote
        -1
        down vote









        $$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



        $$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$



        Solution details:



        Char. equation is
        $${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
        $$t_1=5,quad t_2=frac13$$
        Then solution is
        $$y_k=A,5^k+B,left(frac13right)^k$$
        From initial conditions
        $$A,5^0+B,left(frac13right)^0=1,\
        A,5^1+B,left(frac13right)^1=frac12$$

        $Rightarrow$
        $$A=frac{1}{28},quad B=frac{27}{28}$$
        $Rightarrow$
        $$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



        see for example https://www.youtube.com/watch?v=aHw7hAAjbD0






        share|cite|improve this answer














        $$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



        $$[1,1/2,1,9/2,67/3,2009/18,15067/27,452009/162,3390067/243,101702009/1458,762765067/2187]$$



        Solution details:



        Char. equation is
        $${{t}^{2}}-frac{16 t}{3}+frac{5}{3}=0$$
        $$t_1=5,quad t_2=frac13$$
        Then solution is
        $$y_k=A,5^k+B,left(frac13right)^k$$
        From initial conditions
        $$A,5^0+B,left(frac13right)^0=1,\
        A,5^1+B,left(frac13right)^1=frac12$$

        $Rightarrow$
        $$A=frac{1}{28},quad B=frac{27}{28}$$
        $Rightarrow$
        $$y_k=frac{{{5}^{k}}}{28}+frac{{{3}^{3-k}}}{28}$$



        see for example https://www.youtube.com/watch?v=aHw7hAAjbD0







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 4 hours ago

























        answered 15 hours ago









        Aleksas Domarkas

        7085




        7085






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004137%2fcomputing-the-solution-of-a-recurrence-relation%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$