Ec primes dividing ec numbers
up vote
0
down vote
favorite
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
In this question ec numbers are introduced, formed by the concatenation of two consecutive Mersenne numbers ($157$ for example is denoted by $ec(4)$).
The ec prime $ec(7)=12763$ divides ec numbers $ec(7717)$, $ec(14259)$, $ec(15906)$,...
Does $ec(7)$ divide an infinite number of ec-numbers?
Is $255127$ the largest ec prime dividing at least one ec number besides itself?
number-theory
New contributor
add a comment |
up vote
0
down vote
favorite
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
In this question ec numbers are introduced, formed by the concatenation of two consecutive Mersenne numbers ($157$ for example is denoted by $ec(4)$).
The ec prime $ec(7)=12763$ divides ec numbers $ec(7717)$, $ec(14259)$, $ec(15906)$,...
Does $ec(7)$ divide an infinite number of ec-numbers?
Is $255127$ the largest ec prime dividing at least one ec number besides itself?
number-theory
New contributor
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
In this question ec numbers are introduced, formed by the concatenation of two consecutive Mersenne numbers ($157$ for example is denoted by $ec(4)$).
The ec prime $ec(7)=12763$ divides ec numbers $ec(7717)$, $ec(14259)$, $ec(15906)$,...
Does $ec(7)$ divide an infinite number of ec-numbers?
Is $255127$ the largest ec prime dividing at least one ec number besides itself?
number-theory
New contributor
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
In this question ec numbers are introduced, formed by the concatenation of two consecutive Mersenne numbers ($157$ for example is denoted by $ec(4)$).
The ec prime $ec(7)=12763$ divides ec numbers $ec(7717)$, $ec(14259)$, $ec(15906)$,...
Does $ec(7)$ divide an infinite number of ec-numbers?
Is $255127$ the largest ec prime dividing at least one ec number besides itself?
number-theory
number-theory
New contributor
New contributor
edited yesterday
New contributor
asked 2 days ago
paolo galli
223
223
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
The ec-prime $ec(8)$ divides $ec(k)$ for the following exponents upto $10^7$
284274 1129738 1189846 1214317 1301821 1362842 1445186 1795733 1853089 2203032 2
237654 2267753 3055770 3080516 3532082 3624320 3842054 4653541 4839828 5220495 5
436726 5444103 5828733 5956001 6144125 6432347 6821804 7135640 7173850 7458223 7
513523 7690720 7979828 8006289 8010227 8162195 8195920 8255472 8412247 8449267 8
590602 8936597 9571824 9625677 9853929
I do not know hot to prove it, but both $ec(7)$ and $ec(8)$ should divide infinite many ec-numbers. For example $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisble by $ec(7)$ , if $n$ is of the form $12762k+81$ and $m$ of the form $709l+1$ (but not only then!) . And $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisible by $ec(8)$ , if $n$ is of the form $42521k+1$ and $m$ of the form $85042l+31514$ (but not only then!). I do not know whether even larger ec-primes divide some ec-numbers.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
The ec-prime $ec(8)$ divides $ec(k)$ for the following exponents upto $10^7$
284274 1129738 1189846 1214317 1301821 1362842 1445186 1795733 1853089 2203032 2
237654 2267753 3055770 3080516 3532082 3624320 3842054 4653541 4839828 5220495 5
436726 5444103 5828733 5956001 6144125 6432347 6821804 7135640 7173850 7458223 7
513523 7690720 7979828 8006289 8010227 8162195 8195920 8255472 8412247 8449267 8
590602 8936597 9571824 9625677 9853929
I do not know hot to prove it, but both $ec(7)$ and $ec(8)$ should divide infinite many ec-numbers. For example $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisble by $ec(7)$ , if $n$ is of the form $12762k+81$ and $m$ of the form $709l+1$ (but not only then!) . And $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisible by $ec(8)$ , if $n$ is of the form $42521k+1$ and $m$ of the form $85042l+31514$ (but not only then!). I do not know whether even larger ec-primes divide some ec-numbers.
add a comment |
up vote
1
down vote
The ec-prime $ec(8)$ divides $ec(k)$ for the following exponents upto $10^7$
284274 1129738 1189846 1214317 1301821 1362842 1445186 1795733 1853089 2203032 2
237654 2267753 3055770 3080516 3532082 3624320 3842054 4653541 4839828 5220495 5
436726 5444103 5828733 5956001 6144125 6432347 6821804 7135640 7173850 7458223 7
513523 7690720 7979828 8006289 8010227 8162195 8195920 8255472 8412247 8449267 8
590602 8936597 9571824 9625677 9853929
I do not know hot to prove it, but both $ec(7)$ and $ec(8)$ should divide infinite many ec-numbers. For example $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisble by $ec(7)$ , if $n$ is of the form $12762k+81$ and $m$ of the form $709l+1$ (but not only then!) . And $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisible by $ec(8)$ , if $n$ is of the form $42521k+1$ and $m$ of the form $85042l+31514$ (but not only then!). I do not know whether even larger ec-primes divide some ec-numbers.
add a comment |
up vote
1
down vote
up vote
1
down vote
The ec-prime $ec(8)$ divides $ec(k)$ for the following exponents upto $10^7$
284274 1129738 1189846 1214317 1301821 1362842 1445186 1795733 1853089 2203032 2
237654 2267753 3055770 3080516 3532082 3624320 3842054 4653541 4839828 5220495 5
436726 5444103 5828733 5956001 6144125 6432347 6821804 7135640 7173850 7458223 7
513523 7690720 7979828 8006289 8010227 8162195 8195920 8255472 8412247 8449267 8
590602 8936597 9571824 9625677 9853929
I do not know hot to prove it, but both $ec(7)$ and $ec(8)$ should divide infinite many ec-numbers. For example $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisble by $ec(7)$ , if $n$ is of the form $12762k+81$ and $m$ of the form $709l+1$ (but not only then!) . And $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisible by $ec(8)$ , if $n$ is of the form $42521k+1$ and $m$ of the form $85042l+31514$ (but not only then!). I do not know whether even larger ec-primes divide some ec-numbers.
The ec-prime $ec(8)$ divides $ec(k)$ for the following exponents upto $10^7$
284274 1129738 1189846 1214317 1301821 1362842 1445186 1795733 1853089 2203032 2
237654 2267753 3055770 3080516 3532082 3624320 3842054 4653541 4839828 5220495 5
436726 5444103 5828733 5956001 6144125 6432347 6821804 7135640 7173850 7458223 7
513523 7690720 7979828 8006289 8010227 8162195 8195920 8255472 8412247 8449267 8
590602 8936597 9571824 9625677 9853929
I do not know hot to prove it, but both $ec(7)$ and $ec(8)$ should divide infinite many ec-numbers. For example $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisble by $ec(7)$ , if $n$ is of the form $12762k+81$ and $m$ of the form $709l+1$ (but not only then!) . And $(2^{n+1}-1)cdot 10^m+2^n-1$ is divisible by $ec(8)$ , if $n$ is of the form $42521k+1$ and $m$ of the form $85042l+31514$ (but not only then!). I do not know whether even larger ec-primes divide some ec-numbers.
answered 2 days ago
Peter
46.1k1039125
46.1k1039125
add a comment |
add a comment |
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005398%2fec-primes-dividing-ec-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown