The operator norm of the composition of linear bounded operators between Banach spaces.
up vote
1
down vote
favorite
The set $B(X, Y )$ is a normed linear space with the operator norm.
If $T ∈ B(X, Y)$ and $S ∈ B(Y, Z)$ for $X, Y , Z$ normed linear spaces, then the composition
$ST ∈ B(X, Z)$ and $|ST| ≤ |S| |T|.$
I don't know how to prove this.
Here is my trial.
Since the composition if exist of 2 linear operators is a linear operator then $ST$ is a linear operator. To prove it is bounded we prove that $|ST x| < infty$.
if $|T| = sup_{|x|=1}|Tx| < infty$.
and $|S| = sup_{|y|=1}|Sy| < infty$.
I don't know how to continue.
functional-analysis proof-verification operator-theory linear-transformations
add a comment |
up vote
1
down vote
favorite
The set $B(X, Y )$ is a normed linear space with the operator norm.
If $T ∈ B(X, Y)$ and $S ∈ B(Y, Z)$ for $X, Y , Z$ normed linear spaces, then the composition
$ST ∈ B(X, Z)$ and $|ST| ≤ |S| |T|.$
I don't know how to prove this.
Here is my trial.
Since the composition if exist of 2 linear operators is a linear operator then $ST$ is a linear operator. To prove it is bounded we prove that $|ST x| < infty$.
if $|T| = sup_{|x|=1}|Tx| < infty$.
and $|S| = sup_{|y|=1}|Sy| < infty$.
I don't know how to continue.
functional-analysis proof-verification operator-theory linear-transformations
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
The set $B(X, Y )$ is a normed linear space with the operator norm.
If $T ∈ B(X, Y)$ and $S ∈ B(Y, Z)$ for $X, Y , Z$ normed linear spaces, then the composition
$ST ∈ B(X, Z)$ and $|ST| ≤ |S| |T|.$
I don't know how to prove this.
Here is my trial.
Since the composition if exist of 2 linear operators is a linear operator then $ST$ is a linear operator. To prove it is bounded we prove that $|ST x| < infty$.
if $|T| = sup_{|x|=1}|Tx| < infty$.
and $|S| = sup_{|y|=1}|Sy| < infty$.
I don't know how to continue.
functional-analysis proof-verification operator-theory linear-transformations
The set $B(X, Y )$ is a normed linear space with the operator norm.
If $T ∈ B(X, Y)$ and $S ∈ B(Y, Z)$ for $X, Y , Z$ normed linear spaces, then the composition
$ST ∈ B(X, Z)$ and $|ST| ≤ |S| |T|.$
I don't know how to prove this.
Here is my trial.
Since the composition if exist of 2 linear operators is a linear operator then $ST$ is a linear operator. To prove it is bounded we prove that $|ST x| < infty$.
if $|T| = sup_{|x|=1}|Tx| < infty$.
and $|S| = sup_{|y|=1}|Sy| < infty$.
I don't know how to continue.
functional-analysis proof-verification operator-theory linear-transformations
functional-analysis proof-verification operator-theory linear-transformations
edited 2 days ago
Yaddle
2,954827
2,954827
asked 2 days ago
HybridAlien
2008
2008
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
$$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
$$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
Finally, this implies
$$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
$$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
$$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
Finally, this implies
$$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.
add a comment |
up vote
1
down vote
Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
$$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
$$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
Finally, this implies
$$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.
add a comment |
up vote
1
down vote
up vote
1
down vote
Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
$$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
$$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
Finally, this implies
$$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.
Let $0 neq x in X$. Then you have that $Vert frac{x}{Vert x Vert} Vert = 1$. Thus we obtain
$$frac{1}{Vert x Vert} Vert Tx Vert = Vert Tfrac{x}{Vert x Vert} Vert leq Vert T Vert.$$
This implies shows that $Vert Tx Vert leq Vert T Vert Vert x Vert$ for all $x in X$. (Note: For $x = 0$ this is trivial.) Now from this it follows that
$$ Vert STx Vert leq Vert S Vert Vert T x Vert leq Vert S Vert Vert T Vert Vert x Vert qquad text{for all } x in X.$$
Finally, this implies
$$ Vert ST Vert = sup_{Vert x Vert = 1} Vert STx Vert leq sup_{Vert x Vert = 1} Vert S Vert Vert T Vert Vert x Vert = Vert S Vert Vert T Vert$$
and you are since the equality above implies $Vert ST Vert leq Vert S Vert Vert T Vert < infty$.
answered 2 days ago
Yaddle
2,954827
2,954827
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005389%2fthe-operator-norm-of-the-composition-of-linear-bounded-operators-between-banach%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown