How to expand product of $n$ factors.
up vote
3
down vote
favorite
I have a product say
begin{equation}
F(a,n,x) = prod _{j=0}^{n}(1-{a}^{n-2,j}x)
end{equation}
I want to expand and hope to have general terms of the coefficients. I did for $n= 2,3,4,5,6,7,8...$ I
see it will be different for $n$ even or $n$ odd. We have
begin{equation*}
F(a,2,x)= 1-{x}^{3}+ left( {a}^{2}+1+{a}^{-2} right) {x}^{2}+ left( -{a}^{2}-
1-{a}^{-2} right) x
end{equation*}
begin{equation}
F(a,3,x)= 1+{x}^{4}+ left( -{a}^{3}-a-{a}^{-3}-{a}^{-1} right) {x}^{3}+
left( {a}^{4}+2+{a}^{-2}+{a}^{2}+{a}^{-4} right) {x}^{2}+ left( -{
a}^{3}-a-{a}^{-3}-{a}^{-1} right) x
end{equation}
The coefficients of $a$ gets more interesting as $n$ grows. I am interested in the coefficient of $a.$ Does anyone know how to expand product of $n$ factors.
binomial-coefficients products multinomial-coefficients
add a comment |
up vote
3
down vote
favorite
I have a product say
begin{equation}
F(a,n,x) = prod _{j=0}^{n}(1-{a}^{n-2,j}x)
end{equation}
I want to expand and hope to have general terms of the coefficients. I did for $n= 2,3,4,5,6,7,8...$ I
see it will be different for $n$ even or $n$ odd. We have
begin{equation*}
F(a,2,x)= 1-{x}^{3}+ left( {a}^{2}+1+{a}^{-2} right) {x}^{2}+ left( -{a}^{2}-
1-{a}^{-2} right) x
end{equation*}
begin{equation}
F(a,3,x)= 1+{x}^{4}+ left( -{a}^{3}-a-{a}^{-3}-{a}^{-1} right) {x}^{3}+
left( {a}^{4}+2+{a}^{-2}+{a}^{2}+{a}^{-4} right) {x}^{2}+ left( -{
a}^{3}-a-{a}^{-3}-{a}^{-1} right) x
end{equation}
The coefficients of $a$ gets more interesting as $n$ grows. I am interested in the coefficient of $a.$ Does anyone know how to expand product of $n$ factors.
binomial-coefficients products multinomial-coefficients
By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
– YiFan
Nov 12 at 1:06
@ YiFan yes you can say that.
– Learner
Nov 12 at 1:23
There should be a development of this product involving the $a^2$-binomial coefficients. See here.
– René Gy
Nov 12 at 18:38
@Thanks René Gy
– Learner
Nov 13 at 2:52
Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
– darij grinberg
Nov 14 at 0:44
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I have a product say
begin{equation}
F(a,n,x) = prod _{j=0}^{n}(1-{a}^{n-2,j}x)
end{equation}
I want to expand and hope to have general terms of the coefficients. I did for $n= 2,3,4,5,6,7,8...$ I
see it will be different for $n$ even or $n$ odd. We have
begin{equation*}
F(a,2,x)= 1-{x}^{3}+ left( {a}^{2}+1+{a}^{-2} right) {x}^{2}+ left( -{a}^{2}-
1-{a}^{-2} right) x
end{equation*}
begin{equation}
F(a,3,x)= 1+{x}^{4}+ left( -{a}^{3}-a-{a}^{-3}-{a}^{-1} right) {x}^{3}+
left( {a}^{4}+2+{a}^{-2}+{a}^{2}+{a}^{-4} right) {x}^{2}+ left( -{
a}^{3}-a-{a}^{-3}-{a}^{-1} right) x
end{equation}
The coefficients of $a$ gets more interesting as $n$ grows. I am interested in the coefficient of $a.$ Does anyone know how to expand product of $n$ factors.
binomial-coefficients products multinomial-coefficients
I have a product say
begin{equation}
F(a,n,x) = prod _{j=0}^{n}(1-{a}^{n-2,j}x)
end{equation}
I want to expand and hope to have general terms of the coefficients. I did for $n= 2,3,4,5,6,7,8...$ I
see it will be different for $n$ even or $n$ odd. We have
begin{equation*}
F(a,2,x)= 1-{x}^{3}+ left( {a}^{2}+1+{a}^{-2} right) {x}^{2}+ left( -{a}^{2}-
1-{a}^{-2} right) x
end{equation*}
begin{equation}
F(a,3,x)= 1+{x}^{4}+ left( -{a}^{3}-a-{a}^{-3}-{a}^{-1} right) {x}^{3}+
left( {a}^{4}+2+{a}^{-2}+{a}^{2}+{a}^{-4} right) {x}^{2}+ left( -{
a}^{3}-a-{a}^{-3}-{a}^{-1} right) x
end{equation}
The coefficients of $a$ gets more interesting as $n$ grows. I am interested in the coefficient of $a.$ Does anyone know how to expand product of $n$ factors.
binomial-coefficients products multinomial-coefficients
binomial-coefficients products multinomial-coefficients
edited Nov 12 at 16:34
asked Nov 11 at 23:31
Learner
409310
409310
By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
– YiFan
Nov 12 at 1:06
@ YiFan yes you can say that.
– Learner
Nov 12 at 1:23
There should be a development of this product involving the $a^2$-binomial coefficients. See here.
– René Gy
Nov 12 at 18:38
@Thanks René Gy
– Learner
Nov 13 at 2:52
Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
– darij grinberg
Nov 14 at 0:44
add a comment |
By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
– YiFan
Nov 12 at 1:06
@ YiFan yes you can say that.
– Learner
Nov 12 at 1:23
There should be a development of this product involving the $a^2$-binomial coefficients. See here.
– René Gy
Nov 12 at 18:38
@Thanks René Gy
– Learner
Nov 13 at 2:52
Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
– darij grinberg
Nov 14 at 0:44
By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
– YiFan
Nov 12 at 1:06
By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
– YiFan
Nov 12 at 1:06
@ YiFan yes you can say that.
– Learner
Nov 12 at 1:23
@ YiFan yes you can say that.
– Learner
Nov 12 at 1:23
There should be a development of this product involving the $a^2$-binomial coefficients. See here.
– René Gy
Nov 12 at 18:38
There should be a development of this product involving the $a^2$-binomial coefficients. See here.
– René Gy
Nov 12 at 18:38
@Thanks René Gy
– Learner
Nov 13 at 2:52
@Thanks René Gy
– Learner
Nov 13 at 2:52
Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
– darij grinberg
Nov 14 at 0:44
Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
– darij grinberg
Nov 14 at 0:44
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.
We obtain
begin{align*}
F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
&=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
&=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
&=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
&=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
end{align*}
The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.
Comment:
In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.
In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.
In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.
In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.
We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$
while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
&=frac{k(2n-k+1)}{2}.
end{align*}
In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.
In (7) we shift the index of $l$ to start from $0$.
Example $F(a,3,x)$:
We evaluate the expression (7) for the case $n=3$. We obtain
begin{align*}
color{blue}{F(a,3,x)}&=
1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
&=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
+sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
&qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
-sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
&,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
&qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
end{align*}
in accordance with OPs calculation.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.
We obtain
begin{align*}
F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
&=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
&=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
&=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
&=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
end{align*}
The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.
Comment:
In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.
In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.
In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.
In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.
We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$
while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
&=frac{k(2n-k+1)}{2}.
end{align*}
In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.
In (7) we shift the index of $l$ to start from $0$.
Example $F(a,3,x)$:
We evaluate the expression (7) for the case $n=3$. We obtain
begin{align*}
color{blue}{F(a,3,x)}&=
1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
&=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
+sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
&qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
-sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
&,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
&qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
end{align*}
in accordance with OPs calculation.
add a comment |
up vote
0
down vote
When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.
We obtain
begin{align*}
F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
&=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
&=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
&=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
&=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
end{align*}
The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.
Comment:
In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.
In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.
In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.
In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.
We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$
while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
&=frac{k(2n-k+1)}{2}.
end{align*}
In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.
In (7) we shift the index of $l$ to start from $0$.
Example $F(a,3,x)$:
We evaluate the expression (7) for the case $n=3$. We obtain
begin{align*}
color{blue}{F(a,3,x)}&=
1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
&=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
+sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
&qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
-sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
&,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
&qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
end{align*}
in accordance with OPs calculation.
add a comment |
up vote
0
down vote
up vote
0
down vote
When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.
We obtain
begin{align*}
F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
&=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
&=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
&=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
&=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
end{align*}
The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.
Comment:
In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.
In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.
In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.
In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.
We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$
while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
&=frac{k(2n-k+1)}{2}.
end{align*}
In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.
In (7) we shift the index of $l$ to start from $0$.
Example $F(a,3,x)$:
We evaluate the expression (7) for the case $n=3$. We obtain
begin{align*}
color{blue}{F(a,3,x)}&=
1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
&=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
+sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
&qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
-sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
&,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
&qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
end{align*}
in accordance with OPs calculation.
When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.
We obtain
begin{align*}
F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
&=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
&=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
&=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
&=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
end{align*}
The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.
Comment:
In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.
In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.
In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.
In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.
We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$
while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
&=frac{k(2n-k+1)}{2}.
end{align*}
In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.
In (7) we shift the index of $l$ to start from $0$.
Example $F(a,3,x)$:
We evaluate the expression (7) for the case $n=3$. We obtain
begin{align*}
color{blue}{F(a,3,x)}&=
1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
&=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
+sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
&qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
-sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
&,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
&qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
end{align*}
in accordance with OPs calculation.
edited 7 hours ago
answered 19 hours ago
Markus Scheuer
58.9k454140
58.9k454140
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994608%2fhow-to-expand-product-of-n-factors%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
– YiFan
Nov 12 at 1:06
@ YiFan yes you can say that.
– Learner
Nov 12 at 1:23
There should be a development of this product involving the $a^2$-binomial coefficients. See here.
– René Gy
Nov 12 at 18:38
@Thanks René Gy
– Learner
Nov 13 at 2:52
Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
– darij grinberg
Nov 14 at 0:44