How to expand product of $n$ factors.











up vote
3
down vote

favorite
1












I have a product say
begin{equation}
F(a,n,x) = prod _{j=0}^{n}(1-{a}^{n-2,j}x)
end{equation}

I want to expand and hope to have general terms of the coefficients. I did for $n= 2,3,4,5,6,7,8...$ I
see it will be different for $n$ even or $n$ odd. We have
begin{equation*}
F(a,2,x)= 1-{x}^{3}+ left( {a}^{2}+1+{a}^{-2} right) {x}^{2}+ left( -{a}^{2}-
1-{a}^{-2} right) x
end{equation*}

begin{equation}
F(a,3,x)= 1+{x}^{4}+ left( -{a}^{3}-a-{a}^{-3}-{a}^{-1} right) {x}^{3}+
left( {a}^{4}+2+{a}^{-2}+{a}^{2}+{a}^{-4} right) {x}^{2}+ left( -{
a}^{3}-a-{a}^{-3}-{a}^{-1} right) x
end{equation}

The coefficients of $a$ gets more interesting as $n$ grows. I am interested in the coefficient of $a.$ Does anyone know how to expand product of $n$ factors.










share|cite|improve this question
























  • By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
    – YiFan
    Nov 12 at 1:06










  • @ YiFan yes you can say that.
    – Learner
    Nov 12 at 1:23










  • There should be a development of this product involving the $a^2$-binomial coefficients. See here.
    – René Gy
    Nov 12 at 18:38










  • @Thanks René Gy
    – Learner
    Nov 13 at 2:52










  • Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
    – darij grinberg
    Nov 14 at 0:44















up vote
3
down vote

favorite
1












I have a product say
begin{equation}
F(a,n,x) = prod _{j=0}^{n}(1-{a}^{n-2,j}x)
end{equation}

I want to expand and hope to have general terms of the coefficients. I did for $n= 2,3,4,5,6,7,8...$ I
see it will be different for $n$ even or $n$ odd. We have
begin{equation*}
F(a,2,x)= 1-{x}^{3}+ left( {a}^{2}+1+{a}^{-2} right) {x}^{2}+ left( -{a}^{2}-
1-{a}^{-2} right) x
end{equation*}

begin{equation}
F(a,3,x)= 1+{x}^{4}+ left( -{a}^{3}-a-{a}^{-3}-{a}^{-1} right) {x}^{3}+
left( {a}^{4}+2+{a}^{-2}+{a}^{2}+{a}^{-4} right) {x}^{2}+ left( -{
a}^{3}-a-{a}^{-3}-{a}^{-1} right) x
end{equation}

The coefficients of $a$ gets more interesting as $n$ grows. I am interested in the coefficient of $a.$ Does anyone know how to expand product of $n$ factors.










share|cite|improve this question
























  • By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
    – YiFan
    Nov 12 at 1:06










  • @ YiFan yes you can say that.
    – Learner
    Nov 12 at 1:23










  • There should be a development of this product involving the $a^2$-binomial coefficients. See here.
    – René Gy
    Nov 12 at 18:38










  • @Thanks René Gy
    – Learner
    Nov 13 at 2:52










  • Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
    – darij grinberg
    Nov 14 at 0:44













up vote
3
down vote

favorite
1









up vote
3
down vote

favorite
1






1





I have a product say
begin{equation}
F(a,n,x) = prod _{j=0}^{n}(1-{a}^{n-2,j}x)
end{equation}

I want to expand and hope to have general terms of the coefficients. I did for $n= 2,3,4,5,6,7,8...$ I
see it will be different for $n$ even or $n$ odd. We have
begin{equation*}
F(a,2,x)= 1-{x}^{3}+ left( {a}^{2}+1+{a}^{-2} right) {x}^{2}+ left( -{a}^{2}-
1-{a}^{-2} right) x
end{equation*}

begin{equation}
F(a,3,x)= 1+{x}^{4}+ left( -{a}^{3}-a-{a}^{-3}-{a}^{-1} right) {x}^{3}+
left( {a}^{4}+2+{a}^{-2}+{a}^{2}+{a}^{-4} right) {x}^{2}+ left( -{
a}^{3}-a-{a}^{-3}-{a}^{-1} right) x
end{equation}

The coefficients of $a$ gets more interesting as $n$ grows. I am interested in the coefficient of $a.$ Does anyone know how to expand product of $n$ factors.










share|cite|improve this question















I have a product say
begin{equation}
F(a,n,x) = prod _{j=0}^{n}(1-{a}^{n-2,j}x)
end{equation}

I want to expand and hope to have general terms of the coefficients. I did for $n= 2,3,4,5,6,7,8...$ I
see it will be different for $n$ even or $n$ odd. We have
begin{equation*}
F(a,2,x)= 1-{x}^{3}+ left( {a}^{2}+1+{a}^{-2} right) {x}^{2}+ left( -{a}^{2}-
1-{a}^{-2} right) x
end{equation*}

begin{equation}
F(a,3,x)= 1+{x}^{4}+ left( -{a}^{3}-a-{a}^{-3}-{a}^{-1} right) {x}^{3}+
left( {a}^{4}+2+{a}^{-2}+{a}^{2}+{a}^{-4} right) {x}^{2}+ left( -{
a}^{3}-a-{a}^{-3}-{a}^{-1} right) x
end{equation}

The coefficients of $a$ gets more interesting as $n$ grows. I am interested in the coefficient of $a.$ Does anyone know how to expand product of $n$ factors.







binomial-coefficients products multinomial-coefficients






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 12 at 16:34

























asked Nov 11 at 23:31









Learner

409310




409310












  • By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
    – YiFan
    Nov 12 at 1:06










  • @ YiFan yes you can say that.
    – Learner
    Nov 12 at 1:23










  • There should be a development of this product involving the $a^2$-binomial coefficients. See here.
    – René Gy
    Nov 12 at 18:38










  • @Thanks René Gy
    – Learner
    Nov 13 at 2:52










  • Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
    – darij grinberg
    Nov 14 at 0:44


















  • By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
    – YiFan
    Nov 12 at 1:06










  • @ YiFan yes you can say that.
    – Learner
    Nov 12 at 1:23










  • There should be a development of this product involving the $a^2$-binomial coefficients. See here.
    – René Gy
    Nov 12 at 18:38










  • @Thanks René Gy
    – Learner
    Nov 13 at 2:52










  • Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
    – darij grinberg
    Nov 14 at 0:44
















By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
– YiFan
Nov 12 at 1:06




By "coefficients of $a$" do you mean "coefficients of $x^k$ in terms of $a$"?
– YiFan
Nov 12 at 1:06












@ YiFan yes you can say that.
– Learner
Nov 12 at 1:23




@ YiFan yes you can say that.
– Learner
Nov 12 at 1:23












There should be a development of this product involving the $a^2$-binomial coefficients. See here.
– René Gy
Nov 12 at 18:38




There should be a development of this product involving the $a^2$-binomial coefficients. See here.
– René Gy
Nov 12 at 18:38












@Thanks René Gy
– Learner
Nov 13 at 2:52




@Thanks René Gy
– Learner
Nov 13 at 2:52












Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
– darij grinberg
Nov 14 at 0:44




Apply the $q$-binomial formula $prodlimits_{k=0}^{n-1} left(1+q^k tright) = sumlimits_{k=0}^n q^{kleft(k-1right)/2} dbinom{n}{k}_q t^k$ to $n+1$, $a^n x$ and $a^{-2}$ instead of $n$, $t$ and $q$.
– darij grinberg
Nov 14 at 0:44










1 Answer
1






active

oldest

votes

















up vote
0
down vote













When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.




We obtain
begin{align*}
F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
&=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
&=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
&=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
&=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
&=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
end{align*}

The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.




Comment:




  • In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.


  • In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.


  • In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.



  • In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.



    We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$



    while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
    &=frac{k(2n-k+1)}{2}.
    end{align*}



  • In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.


  • In (7) we shift the index of $l$ to start from $0$.




Example $F(a,3,x)$:



We evaluate the expression (7) for the case $n=3$. We obtain
begin{align*}
color{blue}{F(a,3,x)}&=
1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
&=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
+sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
&qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
-sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
&,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
&qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
end{align*}

in accordance with OPs calculation.







share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994608%2fhow-to-expand-product-of-n-factors%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote













    When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.




    We obtain
    begin{align*}
    F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
    &=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
    &=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
    &=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
    &=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
    &=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
    &=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
    left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
    end{align*}

    The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.




    Comment:




    • In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.


    • In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.


    • In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.



    • In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.



      We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$



      while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
      &=frac{k(2n-k+1)}{2}.
      end{align*}



    • In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.


    • In (7) we shift the index of $l$ to start from $0$.




    Example $F(a,3,x)$:



    We evaluate the expression (7) for the case $n=3$. We obtain
    begin{align*}
    color{blue}{F(a,3,x)}&=
    1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
    &=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
    +sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
    &qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
    -sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
    &,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
    &qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
    end{align*}

    in accordance with OPs calculation.







    share|cite|improve this answer



























      up vote
      0
      down vote













      When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.




      We obtain
      begin{align*}
      F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
      &=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
      &=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
      &=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
      &=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
      &=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
      &=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
      left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
      end{align*}

      The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.




      Comment:




      • In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.


      • In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.


      • In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.



      • In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.



        We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$



        while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
        &=frac{k(2n-k+1)}{2}.
        end{align*}



      • In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.


      • In (7) we shift the index of $l$ to start from $0$.




      Example $F(a,3,x)$:



      We evaluate the expression (7) for the case $n=3$. We obtain
      begin{align*}
      color{blue}{F(a,3,x)}&=
      1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
      &=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
      +sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
      &qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
      -sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
      &,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
      &qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
      end{align*}

      in accordance with OPs calculation.







      share|cite|improve this answer

























        up vote
        0
        down vote










        up vote
        0
        down vote









        When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.




        We obtain
        begin{align*}
        F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
        &=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
        &=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
        &=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
        &=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
        &=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
        &=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
        left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
        end{align*}

        The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.




        Comment:




        • In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.


        • In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.


        • In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.



        • In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.



          We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$



          while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
          &=frac{k(2n-k+1)}{2}.
          end{align*}



        • In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.


        • In (7) we shift the index of $l$ to start from $0$.




        Example $F(a,3,x)$:



        We evaluate the expression (7) for the case $n=3$. We obtain
        begin{align*}
        color{blue}{F(a,3,x)}&=
        1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
        &=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
        +sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
        &qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
        -sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
        &,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
        &qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
        end{align*}

        in accordance with OPs calculation.







        share|cite|improve this answer














        When expanding the product $F(a,n,x)$ in terms of $x$ the coefficients of $x^k$ are polynomials $P_{n,k}(a)$ in $a$. Here we expand $F(a,n,x)$ in order to see the coefficients of $a$ in $P_{n,k}(a)$ explicitly.




        We obtain
        begin{align*}
        F(a,n,x)&=prod_{j=0}^nleft(1-a^{n-2j}xright)tag{1}\
        &=sum_{Ssubseteq {0,1,ldots,n}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{2}\
        &=1+sum_{k=1}^{n+1}sum_{{Ssubseteq {0,1,ldots,n}}atop{|S|=k}}(-x)^{|S|}a^{n|S|}prod_{jin S}a^{-2j}tag{3}\
        &=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{0leq j_1<cdots<j_kleq n}a^{-2(j_1+cdots+j_k)}tag{4}\
        &=1+sum_{k=1}^{n+1}(-x)^ka^{nk}sum_{l=k(k-1)/2}^{k(2n-k+1)/2}sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}a^{-2(j_1+cdots +j_k)}tag{5}\
        &=1+sum_{k=1}^{n+1}(-1)^ksum_{l=k(k-1)/2}^{k(2n-k+1)/2}left(sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l}}1right)a^{nk-2l}x^ktag{6}\
        &=1+sum_{k=1}^{n+1}color{blue}{(-1)^k}sum_{l=0}^{k(n-k+1)}
        left(color{blue}{sum_{{0leq j_1<cdots<j_kleq n}atop{j_1+cdots +j_k=l+k(k-1)/2}}1}right)a^{k(n-k+1)-2l}x^ktag{7}\
        end{align*}

        The coefficients of $a$ in $P_{n,k}(a)$ are given in (7) as the blue marked sum times $(-1)^k$.




        Comment:




        • In (2) we note the product (1) consists of $n+1$ factors and from each factor we choose either $1$ or $-a^{n-2j}x$. We represent each choice as subset $Ssubseteq {0,1,ldots,n}$.


        • In (3) We reorder the summands according to the size $k$ of $S$. We also extract the term $1$ which represents the case $S=emptyset$. In this case we have chosen always $1$ from each of the $n+1$ factors.


        • In (4) we can factor out $-x$ and $a^n$ and thanks to $k$ we can explicitly write the elements of $S={j_1,j_2,ldots,j_k}$ for each specific choice.



        • In (5) we do again a reordering by organizing the summands according to the sum $j_1+j_2+cdots+j_k$ of the $k$-tupels.



          We observe the smallest sum comes from the $k$-tupel $(0,1,2,ldots,k-1)$ which gives $$sum_{j=0}^k j=k(k-1)/2$$



          while the $k$-tupel with the largest sum is $(n-k+1,n-k+2,ldots,n)$ which gives begin{align*}sum_{j=n-k+1}^n j&=sum_{j=1}^n j-sum_{j=1}^{n-k} j=frac{n(n+1)}{2}-frac{(n-k)(n-k+1)}{2}\
          &=frac{k(2n-k+1)}{2}.
          end{align*}



        • In (6) we factor out $a^{-2(j_1+cdots+j_k)}=a^{-2l}$.


        • In (7) we shift the index of $l$ to start from $0$.




        Example $F(a,3,x)$:



        We evaluate the expression (7) for the case $n=3$. We obtain
        begin{align*}
        color{blue}{F(a,3,x)}&=
        1+sum_{k=1}^4(-1)^ksum_{l=0}^{k(4-k)}left(sum_{{0leq j_1leq cdotsleq j_kleq 3}atop{j_1+cdots j_k=l+k(k-1)/2}} 1right)a^{k(4-k)-2l}x^k\
        &=1-sum_{l=0}^3left(sum_{{0leq j_1leq 3}atop{j_1=l}}1right)a^{3-2l}x
        +sum_{l=0}^4left(sum_{{0leq j_1<j_2leq 3}atop{j_1+j_2=l+1}} 1right)a^{4-2l}x^2\
        &qquad -sum_{l=0}^3left(sum_{{0leq j_1<j_2<j_3leq 3}atop{j_1+j_2+j_3=l+3}} 1right)a^{3-2l}x^3
        -sum_{l=0}^0left(sum_{{0leq j_1<j_2<j_3<j_4leq 3}atop{j_1+j_2+j_3j_4=l+6}} 1right)a^{-2l}x^4\
        &,,color{blue}{=1-left(a^3+a+a^{-1}+a^{-3}right)x+left(a^4+a^2+2+a^{-2}+a^{-4}right)x^2}\
        &qquad,,color{blue}{-left(a^3+a+a^{-1}+a^{-3}right)x^3+x^4}
        end{align*}

        in accordance with OPs calculation.








        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 7 hours ago

























        answered 19 hours ago









        Markus Scheuer

        58.9k454140




        58.9k454140






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994608%2fhow-to-expand-product-of-n-factors%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$