Exponents of ec primes ending with digit 7
up vote
0
down vote
favorite
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
In this question ec-numbers are introduced, obttained by the concatenation of two consecutive Mersenne numbers (12763=ec(7) for example). The values of $k$ for which $ec(k)$ is prime are: $[2, 3, 4, 7, 8, 12, 19, 22, 36, 46, 51, 67, 79, 215, 359, 394, 451, 1323, 2131, 3336, 3371, 6231, 19179, 39699, 51456, 56238, 69660, 75894, 79798, 92020, 174968, 176006, 181015, 285019, 331259, 360787, 366770]$
$7, 67, 360787$ are all the $k's$ leading to a prime ending with digit $7$. $7,67,360787$ are all congruent to $1$ $pmod 6$. My question is: does a k exist such that k ends with digit $7$, $ec(k)$ is prime and $k$ is NOT congruent to 1 $pmod 6$? Or that can be ruled out? In other words, if $k$ is congruent to 7 mod 10 and $ec(k)$ is prime, then necessarly $k$ must be congruent to 1 mod 6?
number-theory
New contributor
add a comment |
up vote
0
down vote
favorite
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
In this question ec-numbers are introduced, obttained by the concatenation of two consecutive Mersenne numbers (12763=ec(7) for example). The values of $k$ for which $ec(k)$ is prime are: $[2, 3, 4, 7, 8, 12, 19, 22, 36, 46, 51, 67, 79, 215, 359, 394, 451, 1323, 2131, 3336, 3371, 6231, 19179, 39699, 51456, 56238, 69660, 75894, 79798, 92020, 174968, 176006, 181015, 285019, 331259, 360787, 366770]$
$7, 67, 360787$ are all the $k's$ leading to a prime ending with digit $7$. $7,67,360787$ are all congruent to $1$ $pmod 6$. My question is: does a k exist such that k ends with digit $7$, $ec(k)$ is prime and $k$ is NOT congruent to 1 $pmod 6$? Or that can be ruled out? In other words, if $k$ is congruent to 7 mod 10 and $ec(k)$ is prime, then necessarly $k$ must be congruent to 1 mod 6?
number-theory
New contributor
I noticed that the largest factor of $6,66,360786$ is a palindrome. The largest factor of 6 is 3, the largest factor of 66 is 11, the largest factor of 360786 is 383.
– paolo galli
6 hours ago
@Giovanni Resta can you find a counter-example?
– paolo galli
6 hours ago
@Peter i think it is hard to find a counterexample, maybe it can be ruled out with a proof.
– paolo galli
6 hours ago
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
In this question ec-numbers are introduced, obttained by the concatenation of two consecutive Mersenne numbers (12763=ec(7) for example). The values of $k$ for which $ec(k)$ is prime are: $[2, 3, 4, 7, 8, 12, 19, 22, 36, 46, 51, 67, 79, 215, 359, 394, 451, 1323, 2131, 3336, 3371, 6231, 19179, 39699, 51456, 56238, 69660, 75894, 79798, 92020, 174968, 176006, 181015, 285019, 331259, 360787, 366770]$
$7, 67, 360787$ are all the $k's$ leading to a prime ending with digit $7$. $7,67,360787$ are all congruent to $1$ $pmod 6$. My question is: does a k exist such that k ends with digit $7$, $ec(k)$ is prime and $k$ is NOT congruent to 1 $pmod 6$? Or that can be ruled out? In other words, if $k$ is congruent to 7 mod 10 and $ec(k)$ is prime, then necessarly $k$ must be congruent to 1 mod 6?
number-theory
New contributor
A conjecture about numbers of the form $10^{m}(2^{k}−1)+2^{k-1}−1$, where $m$ is the number of decimal digits of $ 2^{k-1}$.
In this question ec-numbers are introduced, obttained by the concatenation of two consecutive Mersenne numbers (12763=ec(7) for example). The values of $k$ for which $ec(k)$ is prime are: $[2, 3, 4, 7, 8, 12, 19, 22, 36, 46, 51, 67, 79, 215, 359, 394, 451, 1323, 2131, 3336, 3371, 6231, 19179, 39699, 51456, 56238, 69660, 75894, 79798, 92020, 174968, 176006, 181015, 285019, 331259, 360787, 366770]$
$7, 67, 360787$ are all the $k's$ leading to a prime ending with digit $7$. $7,67,360787$ are all congruent to $1$ $pmod 6$. My question is: does a k exist such that k ends with digit $7$, $ec(k)$ is prime and $k$ is NOT congruent to 1 $pmod 6$? Or that can be ruled out? In other words, if $k$ is congruent to 7 mod 10 and $ec(k)$ is prime, then necessarly $k$ must be congruent to 1 mod 6?
number-theory
number-theory
New contributor
New contributor
edited 7 hours ago
New contributor
asked 7 hours ago
paolo galli
163
163
New contributor
New contributor
I noticed that the largest factor of $6,66,360786$ is a palindrome. The largest factor of 6 is 3, the largest factor of 66 is 11, the largest factor of 360786 is 383.
– paolo galli
6 hours ago
@Giovanni Resta can you find a counter-example?
– paolo galli
6 hours ago
@Peter i think it is hard to find a counterexample, maybe it can be ruled out with a proof.
– paolo galli
6 hours ago
add a comment |
I noticed that the largest factor of $6,66,360786$ is a palindrome. The largest factor of 6 is 3, the largest factor of 66 is 11, the largest factor of 360786 is 383.
– paolo galli
6 hours ago
@Giovanni Resta can you find a counter-example?
– paolo galli
6 hours ago
@Peter i think it is hard to find a counterexample, maybe it can be ruled out with a proof.
– paolo galli
6 hours ago
I noticed that the largest factor of $6,66,360786$ is a palindrome. The largest factor of 6 is 3, the largest factor of 66 is 11, the largest factor of 360786 is 383.
– paolo galli
6 hours ago
I noticed that the largest factor of $6,66,360786$ is a palindrome. The largest factor of 6 is 3, the largest factor of 66 is 11, the largest factor of 360786 is 383.
– paolo galli
6 hours ago
@Giovanni Resta can you find a counter-example?
– paolo galli
6 hours ago
@Giovanni Resta can you find a counter-example?
– paolo galli
6 hours ago
@Peter i think it is hard to find a counterexample, maybe it can be ruled out with a proof.
– paolo galli
6 hours ago
@Peter i think it is hard to find a counterexample, maybe it can be ruled out with a proof.
– paolo galli
6 hours ago
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
paolo galli is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004600%2fexponents-of-ec-primes-ending-with-digit-7%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I noticed that the largest factor of $6,66,360786$ is a palindrome. The largest factor of 6 is 3, the largest factor of 66 is 11, the largest factor of 360786 is 383.
– paolo galli
6 hours ago
@Giovanni Resta can you find a counter-example?
– paolo galli
6 hours ago
@Peter i think it is hard to find a counterexample, maybe it can be ruled out with a proof.
– paolo galli
6 hours ago