Characterization of $ell^q$ sequences
I'm working on a solution for this one:
Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$
I tried to prove the statement for the three cases in the following way, but don't come so far..
$p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$
$p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$
$pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$
Thank you for your help!
functional-analysis
add a comment |
I'm working on a solution for this one:
Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$
I tried to prove the statement for the three cases in the following way, but don't come so far..
$p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$
$p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$
$pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$
Thank you for your help!
functional-analysis
add a comment |
I'm working on a solution for this one:
Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$
I tried to prove the statement for the three cases in the following way, but don't come so far..
$p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$
$p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$
$pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$
Thank you for your help!
functional-analysis
I'm working on a solution for this one:
Let $x:=(x_n)_n subset mathbb{C}^mathbb{N}.$ Suppose that for any $yin ell^p, pin [1,+infty],$ the series $sum_{ninmathbb{N}}x_ny_n$ converges. Prove that $(x_n)_n in ell^q$ for $qin [1,+infty]$ satisfying $frac{1}{p}+frac{1}{q} = 1.$
I tried to prove the statement for the three cases in the following way, but don't come so far..
$p=infty :$ Let $(y_n)_nin ell^infty$, so we have $sup_{ninmathbb{N}}|y_n|<infty$ and that the series $sum_{ninmathbb{N}}x_ny_n$ converges. Now I have to show that $sum_{n=1}^{infty}|x_n|<infty$ to get $(x_n)_n in ell^1.$
$p=1:$ I got the hint to construct a sequence $(y_n)_n in ell^1$ such that the sequence $x_ny_n$ does not converge to $0.$
$pin(1,infty):$ here we should apply the Banach Steinhaus Theorem to a well chosen family of linear maps $T_N: ell^ptomathbb{C},Ninmathbb{N}.$
Thank you for your help!
functional-analysis
functional-analysis
edited Nov 20 '18 at 20:24
asked Nov 20 '18 at 18:47
hAM1t
33
33
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006729%2fcharacterization-of-ellq-sequences%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
add a comment |
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
add a comment |
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
For $0ne zin Bbb C$ let $z'=|z|^{q-2}bar z,$ and let $0'=0.$ Note that $|z'|^p=zz'= |z|^q.$
Suppose $xnot in l_q.$ Then there is a strictly increasing sequence $(M_j)_{jin Bbb N}$ in $Bbb N$ such that $$F(n)=sum_{j=M_{2n-1}}^{M_{2n}} |x_j|^q>2^n$$ for each $nin Bbb N.$
For $nin Bbb N$ and $M_{2n-1}leq jleq M_{2n}$ let $y_j=(x_j)'/F(n).$ Let $y_j=0$ for all other $jin Bbb N.$
We have $$sum_{k=1}^{infty}|y_k|^p=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}|x_j|^q/F(n)^{p}=$$ $$=sum_{n=1}^{infty}F(n)^{1-p}<sum_{n=1}^{infty}2^{n(1-p)}<infty$$ because $1-p<0.$
We have $$sum_{k=1}^{infty}x_ky_k=sum_{n=1}^{infty}sum_{j=M_{2n-1}}^{M_{2n}}x_j(x_j)'/F(n)=$$ $$=sum_{n=1}^{infty}1=infty.$$
Remarks. Treating $x$ as a function that sends each $yin l_p$ to $sum_jx_jy_j, $ we cannot assume $x$ is continuous. But let $u(n)=(u(n)_j)_jin l_p$ where $u(n)_j=y_j$ for $M_{2n-1}leq M_{2n}$ and $u(n)_j=0$ for all other $j$. Then $sum_nu(n)=(y_j)_jin l_p$ and also $sum_nx(u(n))=x(sum_nu(n))=infty$.
edited Nov 21 '18 at 6:52
answered Nov 21 '18 at 6:21
DanielWainfleet
34.2k31647
34.2k31647
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006729%2fcharacterization-of-ellq-sequences%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown