$X^*$ with $weak^*$-topology is first category in itself when $X$ is infinite dimensional Fréchet space
I am reading Rudin's Functional Analysis and stuck at the problem in exercise 11 on page 87 : Let $X$ be infinite dimensional Fréchet space , then $X^*$ with it's $weak^*$-topology is of first category in itself. Here is my attempt.
Consider the a basic open set at origin corresponding to ${x_1,...,x_n}subseteq X$ of $weak^*$-topology on $X^*$ given by ${x^*in X^* : |x^*(x_i)|<epsilon, forall i=1,2,..,n}$. Now let $yin X$ and consider a particular $weak^*$ nbd ${x^*in X^*: |x^*(y)|<1}$ which contains a basic nbd i.e. for some $x_1,x_2,...,x_nin X$ and $epsilon>0$ we have $${x^*in X^* : |x^*(x_i)|<epsilon, forall i=1,2,..,n}subseteq {x^*in X^*: |x^*(y)|<1}.$$ Now this implies that if $z^*in X^*$ and $|z^*(x_i)|=0, forall x_i$ with $i=1,2,...,n$ then $tz^* in {x^*in X^*: |x^*(y)|<1}$ for each $t$ in scalar field $Bbb K$ and this implies $|tz^*(y)|<1, forall tin Bbb Kimplies z^*=0$. Now for $xin X$ defining $f_x:X^*rightarrow Bbb K$ by $f_x(Lambda)=Lambda(x), forall Lambda in X^*$ we have $$ker(f_y)supseteq bigcap_{i=1}^n ker(f_{x_i})$$ so that $f_y$ can be written as linear combination of $f_{x_i},i=1,2,...,n$ and this implies $y$ can be written as linear combination of $x_1,x_2,...,x_n$.
Any suggestion or solution will help me . Thanks in advance.
general-topology functional-analysis operator-theory baire-category weak-topology
add a comment |
I am reading Rudin's Functional Analysis and stuck at the problem in exercise 11 on page 87 : Let $X$ be infinite dimensional Fréchet space , then $X^*$ with it's $weak^*$-topology is of first category in itself. Here is my attempt.
Consider the a basic open set at origin corresponding to ${x_1,...,x_n}subseteq X$ of $weak^*$-topology on $X^*$ given by ${x^*in X^* : |x^*(x_i)|<epsilon, forall i=1,2,..,n}$. Now let $yin X$ and consider a particular $weak^*$ nbd ${x^*in X^*: |x^*(y)|<1}$ which contains a basic nbd i.e. for some $x_1,x_2,...,x_nin X$ and $epsilon>0$ we have $${x^*in X^* : |x^*(x_i)|<epsilon, forall i=1,2,..,n}subseteq {x^*in X^*: |x^*(y)|<1}.$$ Now this implies that if $z^*in X^*$ and $|z^*(x_i)|=0, forall x_i$ with $i=1,2,...,n$ then $tz^* in {x^*in X^*: |x^*(y)|<1}$ for each $t$ in scalar field $Bbb K$ and this implies $|tz^*(y)|<1, forall tin Bbb Kimplies z^*=0$. Now for $xin X$ defining $f_x:X^*rightarrow Bbb K$ by $f_x(Lambda)=Lambda(x), forall Lambda in X^*$ we have $$ker(f_y)supseteq bigcap_{i=1}^n ker(f_{x_i})$$ so that $f_y$ can be written as linear combination of $f_{x_i},i=1,2,...,n$ and this implies $y$ can be written as linear combination of $x_1,x_2,...,x_n$.
Any suggestion or solution will help me . Thanks in advance.
general-topology functional-analysis operator-theory baire-category weak-topology
add a comment |
I am reading Rudin's Functional Analysis and stuck at the problem in exercise 11 on page 87 : Let $X$ be infinite dimensional Fréchet space , then $X^*$ with it's $weak^*$-topology is of first category in itself. Here is my attempt.
Consider the a basic open set at origin corresponding to ${x_1,...,x_n}subseteq X$ of $weak^*$-topology on $X^*$ given by ${x^*in X^* : |x^*(x_i)|<epsilon, forall i=1,2,..,n}$. Now let $yin X$ and consider a particular $weak^*$ nbd ${x^*in X^*: |x^*(y)|<1}$ which contains a basic nbd i.e. for some $x_1,x_2,...,x_nin X$ and $epsilon>0$ we have $${x^*in X^* : |x^*(x_i)|<epsilon, forall i=1,2,..,n}subseteq {x^*in X^*: |x^*(y)|<1}.$$ Now this implies that if $z^*in X^*$ and $|z^*(x_i)|=0, forall x_i$ with $i=1,2,...,n$ then $tz^* in {x^*in X^*: |x^*(y)|<1}$ for each $t$ in scalar field $Bbb K$ and this implies $|tz^*(y)|<1, forall tin Bbb Kimplies z^*=0$. Now for $xin X$ defining $f_x:X^*rightarrow Bbb K$ by $f_x(Lambda)=Lambda(x), forall Lambda in X^*$ we have $$ker(f_y)supseteq bigcap_{i=1}^n ker(f_{x_i})$$ so that $f_y$ can be written as linear combination of $f_{x_i},i=1,2,...,n$ and this implies $y$ can be written as linear combination of $x_1,x_2,...,x_n$.
Any suggestion or solution will help me . Thanks in advance.
general-topology functional-analysis operator-theory baire-category weak-topology
I am reading Rudin's Functional Analysis and stuck at the problem in exercise 11 on page 87 : Let $X$ be infinite dimensional Fréchet space , then $X^*$ with it's $weak^*$-topology is of first category in itself. Here is my attempt.
Consider the a basic open set at origin corresponding to ${x_1,...,x_n}subseteq X$ of $weak^*$-topology on $X^*$ given by ${x^*in X^* : |x^*(x_i)|<epsilon, forall i=1,2,..,n}$. Now let $yin X$ and consider a particular $weak^*$ nbd ${x^*in X^*: |x^*(y)|<1}$ which contains a basic nbd i.e. for some $x_1,x_2,...,x_nin X$ and $epsilon>0$ we have $${x^*in X^* : |x^*(x_i)|<epsilon, forall i=1,2,..,n}subseteq {x^*in X^*: |x^*(y)|<1}.$$ Now this implies that if $z^*in X^*$ and $|z^*(x_i)|=0, forall x_i$ with $i=1,2,...,n$ then $tz^* in {x^*in X^*: |x^*(y)|<1}$ for each $t$ in scalar field $Bbb K$ and this implies $|tz^*(y)|<1, forall tin Bbb Kimplies z^*=0$. Now for $xin X$ defining $f_x:X^*rightarrow Bbb K$ by $f_x(Lambda)=Lambda(x), forall Lambda in X^*$ we have $$ker(f_y)supseteq bigcap_{i=1}^n ker(f_{x_i})$$ so that $f_y$ can be written as linear combination of $f_{x_i},i=1,2,...,n$ and this implies $y$ can be written as linear combination of $x_1,x_2,...,x_n$.
Any suggestion or solution will help me . Thanks in advance.
general-topology functional-analysis operator-theory baire-category weak-topology
general-topology functional-analysis operator-theory baire-category weak-topology
asked Nov 20 '18 at 20:24
Mathlover
1326
1326
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Take a decreasing basic sequence of $0$-neighbourhoods $U_n$ in $X$ (i.e., every $0$-neighbourhood contains some $U_n$, such a sequence exists because $X$ is metrizable). The polars $U_n^circ$ are weak$^*$-closed with $X^*=bigcup_{ninmathbb N} U_n^circ$. By your description of the basic weak$^*$ open sets in $X^*$ it is clear that the interior of each $U_n^circ$ is empty. (A different argument would use Alaoglu's theorem: If $U_n^circ$ had interior points it would be a compact $0$-neighbourhood in $X^*$, and any topological vector space with a compact $0$-neighbourhood is finite dimensional.)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006849%2fx-with-weak-topology-is-first-category-in-itself-when-x-is-infinite-di%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Take a decreasing basic sequence of $0$-neighbourhoods $U_n$ in $X$ (i.e., every $0$-neighbourhood contains some $U_n$, such a sequence exists because $X$ is metrizable). The polars $U_n^circ$ are weak$^*$-closed with $X^*=bigcup_{ninmathbb N} U_n^circ$. By your description of the basic weak$^*$ open sets in $X^*$ it is clear that the interior of each $U_n^circ$ is empty. (A different argument would use Alaoglu's theorem: If $U_n^circ$ had interior points it would be a compact $0$-neighbourhood in $X^*$, and any topological vector space with a compact $0$-neighbourhood is finite dimensional.)
add a comment |
Take a decreasing basic sequence of $0$-neighbourhoods $U_n$ in $X$ (i.e., every $0$-neighbourhood contains some $U_n$, such a sequence exists because $X$ is metrizable). The polars $U_n^circ$ are weak$^*$-closed with $X^*=bigcup_{ninmathbb N} U_n^circ$. By your description of the basic weak$^*$ open sets in $X^*$ it is clear that the interior of each $U_n^circ$ is empty. (A different argument would use Alaoglu's theorem: If $U_n^circ$ had interior points it would be a compact $0$-neighbourhood in $X^*$, and any topological vector space with a compact $0$-neighbourhood is finite dimensional.)
add a comment |
Take a decreasing basic sequence of $0$-neighbourhoods $U_n$ in $X$ (i.e., every $0$-neighbourhood contains some $U_n$, such a sequence exists because $X$ is metrizable). The polars $U_n^circ$ are weak$^*$-closed with $X^*=bigcup_{ninmathbb N} U_n^circ$. By your description of the basic weak$^*$ open sets in $X^*$ it is clear that the interior of each $U_n^circ$ is empty. (A different argument would use Alaoglu's theorem: If $U_n^circ$ had interior points it would be a compact $0$-neighbourhood in $X^*$, and any topological vector space with a compact $0$-neighbourhood is finite dimensional.)
Take a decreasing basic sequence of $0$-neighbourhoods $U_n$ in $X$ (i.e., every $0$-neighbourhood contains some $U_n$, such a sequence exists because $X$ is metrizable). The polars $U_n^circ$ are weak$^*$-closed with $X^*=bigcup_{ninmathbb N} U_n^circ$. By your description of the basic weak$^*$ open sets in $X^*$ it is clear that the interior of each $U_n^circ$ is empty. (A different argument would use Alaoglu's theorem: If $U_n^circ$ had interior points it would be a compact $0$-neighbourhood in $X^*$, and any topological vector space with a compact $0$-neighbourhood is finite dimensional.)
answered Nov 21 '18 at 8:40
Jochen
6,675922
6,675922
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006849%2fx-with-weak-topology-is-first-category-in-itself-when-x-is-infinite-di%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown