Show that $ad-bc ne 0$ for a composition of two Mobius transformations.
I could prove that a composition of two Mobius transformations is again a Mobius transformation. Let be $T(z)=dfrac{a_1z+b_1}{c_1z+d_1}, (a_1d_1-c_1b_1 ne 0)$ and $S(z)=dfrac{a_2z+b_2}{c_2z+d_2}, (a_2d_2-c_2b_2 ne 0)$, so $S[T(z)]=dfrac{a_3z+b_3}{c_3z+d_3}$. But I can't prove whether $a_3d_3-c_3b_3 ne 0)$. The book says $a_3d_3-c_3b_3 = (a_1d_1-c_1b_1)(a_2d_2-c_2b_2)$ but in order that to hold also must $c_2b_2(c_1b_1+a_1d_1)=0$ hold to make $a_3d_3-c_3b_3 - (a_1d_1-c_1b_1)(a_2d_2-c_2b_2)$ to be zero. I did calculations thrice! Where am I doing wrong?
complex-analysis proof-verification mobius-transformation
add a comment |
I could prove that a composition of two Mobius transformations is again a Mobius transformation. Let be $T(z)=dfrac{a_1z+b_1}{c_1z+d_1}, (a_1d_1-c_1b_1 ne 0)$ and $S(z)=dfrac{a_2z+b_2}{c_2z+d_2}, (a_2d_2-c_2b_2 ne 0)$, so $S[T(z)]=dfrac{a_3z+b_3}{c_3z+d_3}$. But I can't prove whether $a_3d_3-c_3b_3 ne 0)$. The book says $a_3d_3-c_3b_3 = (a_1d_1-c_1b_1)(a_2d_2-c_2b_2)$ but in order that to hold also must $c_2b_2(c_1b_1+a_1d_1)=0$ hold to make $a_3d_3-c_3b_3 - (a_1d_1-c_1b_1)(a_2d_2-c_2b_2)$ to be zero. I did calculations thrice! Where am I doing wrong?
complex-analysis proof-verification mobius-transformation
1
Probably a calculation error anyway. bpaste.net/show/156c07aa4363 check all the steps there.
– zwim
Nov 20 '18 at 21:39
@zwim, it solve my problem. thanks a lot :)
– 72D
Nov 20 '18 at 22:09
add a comment |
I could prove that a composition of two Mobius transformations is again a Mobius transformation. Let be $T(z)=dfrac{a_1z+b_1}{c_1z+d_1}, (a_1d_1-c_1b_1 ne 0)$ and $S(z)=dfrac{a_2z+b_2}{c_2z+d_2}, (a_2d_2-c_2b_2 ne 0)$, so $S[T(z)]=dfrac{a_3z+b_3}{c_3z+d_3}$. But I can't prove whether $a_3d_3-c_3b_3 ne 0)$. The book says $a_3d_3-c_3b_3 = (a_1d_1-c_1b_1)(a_2d_2-c_2b_2)$ but in order that to hold also must $c_2b_2(c_1b_1+a_1d_1)=0$ hold to make $a_3d_3-c_3b_3 - (a_1d_1-c_1b_1)(a_2d_2-c_2b_2)$ to be zero. I did calculations thrice! Where am I doing wrong?
complex-analysis proof-verification mobius-transformation
I could prove that a composition of two Mobius transformations is again a Mobius transformation. Let be $T(z)=dfrac{a_1z+b_1}{c_1z+d_1}, (a_1d_1-c_1b_1 ne 0)$ and $S(z)=dfrac{a_2z+b_2}{c_2z+d_2}, (a_2d_2-c_2b_2 ne 0)$, so $S[T(z)]=dfrac{a_3z+b_3}{c_3z+d_3}$. But I can't prove whether $a_3d_3-c_3b_3 ne 0)$. The book says $a_3d_3-c_3b_3 = (a_1d_1-c_1b_1)(a_2d_2-c_2b_2)$ but in order that to hold also must $c_2b_2(c_1b_1+a_1d_1)=0$ hold to make $a_3d_3-c_3b_3 - (a_1d_1-c_1b_1)(a_2d_2-c_2b_2)$ to be zero. I did calculations thrice! Where am I doing wrong?
complex-analysis proof-verification mobius-transformation
complex-analysis proof-verification mobius-transformation
edited Nov 20 '18 at 21:25
asked Nov 20 '18 at 21:20
72D
572116
572116
1
Probably a calculation error anyway. bpaste.net/show/156c07aa4363 check all the steps there.
– zwim
Nov 20 '18 at 21:39
@zwim, it solve my problem. thanks a lot :)
– 72D
Nov 20 '18 at 22:09
add a comment |
1
Probably a calculation error anyway. bpaste.net/show/156c07aa4363 check all the steps there.
– zwim
Nov 20 '18 at 21:39
@zwim, it solve my problem. thanks a lot :)
– 72D
Nov 20 '18 at 22:09
1
1
Probably a calculation error anyway. bpaste.net/show/156c07aa4363 check all the steps there.
– zwim
Nov 20 '18 at 21:39
Probably a calculation error anyway. bpaste.net/show/156c07aa4363 check all the steps there.
– zwim
Nov 20 '18 at 21:39
@zwim, it solve my problem. thanks a lot :)
– 72D
Nov 20 '18 at 22:09
@zwim, it solve my problem. thanks a lot :)
– 72D
Nov 20 '18 at 22:09
add a comment |
2 Answers
2
active
oldest
votes
Note thatbegin{align}Sbigl(T(z)bigr)&=frac{a_2frac{a_1z+b_1}{c_1z+d_1}+b_2}{c_2frac{a_1z+b_1}{c_1z+d_1}+d_2}\&=frac{a_2(a_1z+b_1)+b_2(c_1z+d_1)}{c_2(a_1z+b_1)+d_2(c_1z+d_1)}\&=frac{(a_2a_1+b_2c_1)z+a_2b_1+b_2d_1}{(c_2a_1+d_2c_1)z+c_2b_1+d_2b_1}end{align}
So,begin{align}begin{vmatrix}a_3&b_3\c_3&d_3end{vmatrix}&=begin{vmatrix}a_2a_1+b_2c_1&a_2b_1+b_2d_1\c_2a_1+d_2c_1&c_2b_1+d_2b_1end{vmatrix}\&=detleft(begin{bmatrix}a_2&b_2\c_2&d_2end{bmatrix}.begin{bmatrix}a_1&b_1\c_1&d_1end{bmatrix}right)\&=begin{vmatrix}a_2&b_2\c_2&d_2end{vmatrix}.begin{vmatrix}a_1&b_1\c_1&d_1end{vmatrix}\&neq0.end{align}
In your answer (for example) how $a_3 =a_1a_2+b_1c_2$? I calculate $S(T(z))$ by direct inserting..
– 72D
Nov 20 '18 at 21:37
1
I have expanded and corrected my answer. Is it clear now?
– José Carlos Santos
Nov 20 '18 at 22:06
add a comment |
There is a natural identification of these transformations with that of $2times 2$ matrices with non-zero determinant:
$$frac{az+b}{cz+d}longleftrightarrow begin{pmatrix}a&b\
c&d
end{pmatrix}.$$
You can, relatively easily, prove that composition of two of these transformations coincides with matrix multiplication, which makes the result easier to see.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006920%2fshow-that-ad-bc-ne-0-for-a-composition-of-two-mobius-transformations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Note thatbegin{align}Sbigl(T(z)bigr)&=frac{a_2frac{a_1z+b_1}{c_1z+d_1}+b_2}{c_2frac{a_1z+b_1}{c_1z+d_1}+d_2}\&=frac{a_2(a_1z+b_1)+b_2(c_1z+d_1)}{c_2(a_1z+b_1)+d_2(c_1z+d_1)}\&=frac{(a_2a_1+b_2c_1)z+a_2b_1+b_2d_1}{(c_2a_1+d_2c_1)z+c_2b_1+d_2b_1}end{align}
So,begin{align}begin{vmatrix}a_3&b_3\c_3&d_3end{vmatrix}&=begin{vmatrix}a_2a_1+b_2c_1&a_2b_1+b_2d_1\c_2a_1+d_2c_1&c_2b_1+d_2b_1end{vmatrix}\&=detleft(begin{bmatrix}a_2&b_2\c_2&d_2end{bmatrix}.begin{bmatrix}a_1&b_1\c_1&d_1end{bmatrix}right)\&=begin{vmatrix}a_2&b_2\c_2&d_2end{vmatrix}.begin{vmatrix}a_1&b_1\c_1&d_1end{vmatrix}\&neq0.end{align}
In your answer (for example) how $a_3 =a_1a_2+b_1c_2$? I calculate $S(T(z))$ by direct inserting..
– 72D
Nov 20 '18 at 21:37
1
I have expanded and corrected my answer. Is it clear now?
– José Carlos Santos
Nov 20 '18 at 22:06
add a comment |
Note thatbegin{align}Sbigl(T(z)bigr)&=frac{a_2frac{a_1z+b_1}{c_1z+d_1}+b_2}{c_2frac{a_1z+b_1}{c_1z+d_1}+d_2}\&=frac{a_2(a_1z+b_1)+b_2(c_1z+d_1)}{c_2(a_1z+b_1)+d_2(c_1z+d_1)}\&=frac{(a_2a_1+b_2c_1)z+a_2b_1+b_2d_1}{(c_2a_1+d_2c_1)z+c_2b_1+d_2b_1}end{align}
So,begin{align}begin{vmatrix}a_3&b_3\c_3&d_3end{vmatrix}&=begin{vmatrix}a_2a_1+b_2c_1&a_2b_1+b_2d_1\c_2a_1+d_2c_1&c_2b_1+d_2b_1end{vmatrix}\&=detleft(begin{bmatrix}a_2&b_2\c_2&d_2end{bmatrix}.begin{bmatrix}a_1&b_1\c_1&d_1end{bmatrix}right)\&=begin{vmatrix}a_2&b_2\c_2&d_2end{vmatrix}.begin{vmatrix}a_1&b_1\c_1&d_1end{vmatrix}\&neq0.end{align}
In your answer (for example) how $a_3 =a_1a_2+b_1c_2$? I calculate $S(T(z))$ by direct inserting..
– 72D
Nov 20 '18 at 21:37
1
I have expanded and corrected my answer. Is it clear now?
– José Carlos Santos
Nov 20 '18 at 22:06
add a comment |
Note thatbegin{align}Sbigl(T(z)bigr)&=frac{a_2frac{a_1z+b_1}{c_1z+d_1}+b_2}{c_2frac{a_1z+b_1}{c_1z+d_1}+d_2}\&=frac{a_2(a_1z+b_1)+b_2(c_1z+d_1)}{c_2(a_1z+b_1)+d_2(c_1z+d_1)}\&=frac{(a_2a_1+b_2c_1)z+a_2b_1+b_2d_1}{(c_2a_1+d_2c_1)z+c_2b_1+d_2b_1}end{align}
So,begin{align}begin{vmatrix}a_3&b_3\c_3&d_3end{vmatrix}&=begin{vmatrix}a_2a_1+b_2c_1&a_2b_1+b_2d_1\c_2a_1+d_2c_1&c_2b_1+d_2b_1end{vmatrix}\&=detleft(begin{bmatrix}a_2&b_2\c_2&d_2end{bmatrix}.begin{bmatrix}a_1&b_1\c_1&d_1end{bmatrix}right)\&=begin{vmatrix}a_2&b_2\c_2&d_2end{vmatrix}.begin{vmatrix}a_1&b_1\c_1&d_1end{vmatrix}\&neq0.end{align}
Note thatbegin{align}Sbigl(T(z)bigr)&=frac{a_2frac{a_1z+b_1}{c_1z+d_1}+b_2}{c_2frac{a_1z+b_1}{c_1z+d_1}+d_2}\&=frac{a_2(a_1z+b_1)+b_2(c_1z+d_1)}{c_2(a_1z+b_1)+d_2(c_1z+d_1)}\&=frac{(a_2a_1+b_2c_1)z+a_2b_1+b_2d_1}{(c_2a_1+d_2c_1)z+c_2b_1+d_2b_1}end{align}
So,begin{align}begin{vmatrix}a_3&b_3\c_3&d_3end{vmatrix}&=begin{vmatrix}a_2a_1+b_2c_1&a_2b_1+b_2d_1\c_2a_1+d_2c_1&c_2b_1+d_2b_1end{vmatrix}\&=detleft(begin{bmatrix}a_2&b_2\c_2&d_2end{bmatrix}.begin{bmatrix}a_1&b_1\c_1&d_1end{bmatrix}right)\&=begin{vmatrix}a_2&b_2\c_2&d_2end{vmatrix}.begin{vmatrix}a_1&b_1\c_1&d_1end{vmatrix}\&neq0.end{align}
edited Nov 20 '18 at 22:05
answered Nov 20 '18 at 21:33
José Carlos Santos
151k22123224
151k22123224
In your answer (for example) how $a_3 =a_1a_2+b_1c_2$? I calculate $S(T(z))$ by direct inserting..
– 72D
Nov 20 '18 at 21:37
1
I have expanded and corrected my answer. Is it clear now?
– José Carlos Santos
Nov 20 '18 at 22:06
add a comment |
In your answer (for example) how $a_3 =a_1a_2+b_1c_2$? I calculate $S(T(z))$ by direct inserting..
– 72D
Nov 20 '18 at 21:37
1
I have expanded and corrected my answer. Is it clear now?
– José Carlos Santos
Nov 20 '18 at 22:06
In your answer (for example) how $a_3 =a_1a_2+b_1c_2$? I calculate $S(T(z))$ by direct inserting..
– 72D
Nov 20 '18 at 21:37
In your answer (for example) how $a_3 =a_1a_2+b_1c_2$? I calculate $S(T(z))$ by direct inserting..
– 72D
Nov 20 '18 at 21:37
1
1
I have expanded and corrected my answer. Is it clear now?
– José Carlos Santos
Nov 20 '18 at 22:06
I have expanded and corrected my answer. Is it clear now?
– José Carlos Santos
Nov 20 '18 at 22:06
add a comment |
There is a natural identification of these transformations with that of $2times 2$ matrices with non-zero determinant:
$$frac{az+b}{cz+d}longleftrightarrow begin{pmatrix}a&b\
c&d
end{pmatrix}.$$
You can, relatively easily, prove that composition of two of these transformations coincides with matrix multiplication, which makes the result easier to see.
add a comment |
There is a natural identification of these transformations with that of $2times 2$ matrices with non-zero determinant:
$$frac{az+b}{cz+d}longleftrightarrow begin{pmatrix}a&b\
c&d
end{pmatrix}.$$
You can, relatively easily, prove that composition of two of these transformations coincides with matrix multiplication, which makes the result easier to see.
add a comment |
There is a natural identification of these transformations with that of $2times 2$ matrices with non-zero determinant:
$$frac{az+b}{cz+d}longleftrightarrow begin{pmatrix}a&b\
c&d
end{pmatrix}.$$
You can, relatively easily, prove that composition of two of these transformations coincides with matrix multiplication, which makes the result easier to see.
There is a natural identification of these transformations with that of $2times 2$ matrices with non-zero determinant:
$$frac{az+b}{cz+d}longleftrightarrow begin{pmatrix}a&b\
c&d
end{pmatrix}.$$
You can, relatively easily, prove that composition of two of these transformations coincides with matrix multiplication, which makes the result easier to see.
answered Nov 20 '18 at 21:41
Chickenmancer
3,319723
3,319723
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006920%2fshow-that-ad-bc-ne-0-for-a-composition-of-two-mobius-transformations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Probably a calculation error anyway. bpaste.net/show/156c07aa4363 check all the steps there.
– zwim
Nov 20 '18 at 21:39
@zwim, it solve my problem. thanks a lot :)
– 72D
Nov 20 '18 at 22:09