Integral sequence












1














So we have this sequence, $$I_{n}=int_0^1ln(1+x^n):dx$$ and we have to show that this is monotone and bounded.
My solution is this: $$xin[0,1]implies 0leqln(1+x^n)leqln(2)$$ and if we integrate from $0$ to $1$ we get $$0leq I_{n}leqln(2)$$ which proves that $I_{n}$ is bounded. Is this correct?
To show that the sequence is monotone I was thinking about the difference $I_{n}-I_{n+1}$. Is this correct too?$$ $$
!!!EDIT!!! Now we have to show that $I_{n}leqfrac{1}{n+1},::forall:ninmathbb{N}$ and to find $limlimits_{xtoinfty}I_n$.$$$$So, I guess is obvious that $I_nleqint_{0}^{1}x^n:dx$, right???










share|cite|improve this question
























  • For a fixed $xin(0,1)$, $x^{n+1}< x^n$ implies $log(1+x^{n+1})<log(1+x^n)$ and $I_n$ is obviously decreasing.
    – Jack D'Aurizio
    Nov 20 '18 at 20:48
















1














So we have this sequence, $$I_{n}=int_0^1ln(1+x^n):dx$$ and we have to show that this is monotone and bounded.
My solution is this: $$xin[0,1]implies 0leqln(1+x^n)leqln(2)$$ and if we integrate from $0$ to $1$ we get $$0leq I_{n}leqln(2)$$ which proves that $I_{n}$ is bounded. Is this correct?
To show that the sequence is monotone I was thinking about the difference $I_{n}-I_{n+1}$. Is this correct too?$$ $$
!!!EDIT!!! Now we have to show that $I_{n}leqfrac{1}{n+1},::forall:ninmathbb{N}$ and to find $limlimits_{xtoinfty}I_n$.$$$$So, I guess is obvious that $I_nleqint_{0}^{1}x^n:dx$, right???










share|cite|improve this question
























  • For a fixed $xin(0,1)$, $x^{n+1}< x^n$ implies $log(1+x^{n+1})<log(1+x^n)$ and $I_n$ is obviously decreasing.
    – Jack D'Aurizio
    Nov 20 '18 at 20:48














1












1








1







So we have this sequence, $$I_{n}=int_0^1ln(1+x^n):dx$$ and we have to show that this is monotone and bounded.
My solution is this: $$xin[0,1]implies 0leqln(1+x^n)leqln(2)$$ and if we integrate from $0$ to $1$ we get $$0leq I_{n}leqln(2)$$ which proves that $I_{n}$ is bounded. Is this correct?
To show that the sequence is monotone I was thinking about the difference $I_{n}-I_{n+1}$. Is this correct too?$$ $$
!!!EDIT!!! Now we have to show that $I_{n}leqfrac{1}{n+1},::forall:ninmathbb{N}$ and to find $limlimits_{xtoinfty}I_n$.$$$$So, I guess is obvious that $I_nleqint_{0}^{1}x^n:dx$, right???










share|cite|improve this question















So we have this sequence, $$I_{n}=int_0^1ln(1+x^n):dx$$ and we have to show that this is monotone and bounded.
My solution is this: $$xin[0,1]implies 0leqln(1+x^n)leqln(2)$$ and if we integrate from $0$ to $1$ we get $$0leq I_{n}leqln(2)$$ which proves that $I_{n}$ is bounded. Is this correct?
To show that the sequence is monotone I was thinking about the difference $I_{n}-I_{n+1}$. Is this correct too?$$ $$
!!!EDIT!!! Now we have to show that $I_{n}leqfrac{1}{n+1},::forall:ninmathbb{N}$ and to find $limlimits_{xtoinfty}I_n$.$$$$So, I guess is obvious that $I_nleqint_{0}^{1}x^n:dx$, right???







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 20 '18 at 21:35

























asked Nov 20 '18 at 20:44









Numbers

1116




1116












  • For a fixed $xin(0,1)$, $x^{n+1}< x^n$ implies $log(1+x^{n+1})<log(1+x^n)$ and $I_n$ is obviously decreasing.
    – Jack D'Aurizio
    Nov 20 '18 at 20:48


















  • For a fixed $xin(0,1)$, $x^{n+1}< x^n$ implies $log(1+x^{n+1})<log(1+x^n)$ and $I_n$ is obviously decreasing.
    – Jack D'Aurizio
    Nov 20 '18 at 20:48
















For a fixed $xin(0,1)$, $x^{n+1}< x^n$ implies $log(1+x^{n+1})<log(1+x^n)$ and $I_n$ is obviously decreasing.
– Jack D'Aurizio
Nov 20 '18 at 20:48




For a fixed $xin(0,1)$, $x^{n+1}< x^n$ implies $log(1+x^{n+1})<log(1+x^n)$ and $I_n$ is obviously decreasing.
– Jack D'Aurizio
Nov 20 '18 at 20:48










2 Answers
2






active

oldest

votes


















0














For the last question. you can derivate $ln(1+x^n)-x^n$ prove it's decreasing and then for x=0 it's equal 0 so in [0;1] the difference is negative.
then you need to integrate $x^n$ and for the limite use sandwich theorem( also called gent d'arme)






share|cite|improve this answer























  • actually, this is what I did !! thx
    – Numbers
    Nov 20 '18 at 22:13



















1














What you did is correct. In order to show that $(I_n)_{ninmathbb N}$ is monotonic, you do$$bigl(forall xin[0,1]bigr):1+x^{n+1}leqslant1+x^nimpliesint_0^1ln(1+x^{n+1}),mathrm dxleqslantint_0^1ln(1+x^n),mathrm dx,$$since $ln$ is increasing.






share|cite|improve this answer





















  • Aaah, sure... easy and nice!! thx a lot!
    – Numbers
    Nov 20 '18 at 21:19











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006865%2fintegral-sequence%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









0














For the last question. you can derivate $ln(1+x^n)-x^n$ prove it's decreasing and then for x=0 it's equal 0 so in [0;1] the difference is negative.
then you need to integrate $x^n$ and for the limite use sandwich theorem( also called gent d'arme)






share|cite|improve this answer























  • actually, this is what I did !! thx
    – Numbers
    Nov 20 '18 at 22:13
















0














For the last question. you can derivate $ln(1+x^n)-x^n$ prove it's decreasing and then for x=0 it's equal 0 so in [0;1] the difference is negative.
then you need to integrate $x^n$ and for the limite use sandwich theorem( also called gent d'arme)






share|cite|improve this answer























  • actually, this is what I did !! thx
    – Numbers
    Nov 20 '18 at 22:13














0












0








0






For the last question. you can derivate $ln(1+x^n)-x^n$ prove it's decreasing and then for x=0 it's equal 0 so in [0;1] the difference is negative.
then you need to integrate $x^n$ and for the limite use sandwich theorem( also called gent d'arme)






share|cite|improve this answer














For the last question. you can derivate $ln(1+x^n)-x^n$ prove it's decreasing and then for x=0 it's equal 0 so in [0;1] the difference is negative.
then you need to integrate $x^n$ and for the limite use sandwich theorem( also called gent d'arme)







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 20 '18 at 21:55

























answered Nov 20 '18 at 21:38









Amin Sassi

162




162












  • actually, this is what I did !! thx
    – Numbers
    Nov 20 '18 at 22:13


















  • actually, this is what I did !! thx
    – Numbers
    Nov 20 '18 at 22:13
















actually, this is what I did !! thx
– Numbers
Nov 20 '18 at 22:13




actually, this is what I did !! thx
– Numbers
Nov 20 '18 at 22:13











1














What you did is correct. In order to show that $(I_n)_{ninmathbb N}$ is monotonic, you do$$bigl(forall xin[0,1]bigr):1+x^{n+1}leqslant1+x^nimpliesint_0^1ln(1+x^{n+1}),mathrm dxleqslantint_0^1ln(1+x^n),mathrm dx,$$since $ln$ is increasing.






share|cite|improve this answer





















  • Aaah, sure... easy and nice!! thx a lot!
    – Numbers
    Nov 20 '18 at 21:19
















1














What you did is correct. In order to show that $(I_n)_{ninmathbb N}$ is monotonic, you do$$bigl(forall xin[0,1]bigr):1+x^{n+1}leqslant1+x^nimpliesint_0^1ln(1+x^{n+1}),mathrm dxleqslantint_0^1ln(1+x^n),mathrm dx,$$since $ln$ is increasing.






share|cite|improve this answer





















  • Aaah, sure... easy and nice!! thx a lot!
    – Numbers
    Nov 20 '18 at 21:19














1












1








1






What you did is correct. In order to show that $(I_n)_{ninmathbb N}$ is monotonic, you do$$bigl(forall xin[0,1]bigr):1+x^{n+1}leqslant1+x^nimpliesint_0^1ln(1+x^{n+1}),mathrm dxleqslantint_0^1ln(1+x^n),mathrm dx,$$since $ln$ is increasing.






share|cite|improve this answer












What you did is correct. In order to show that $(I_n)_{ninmathbb N}$ is monotonic, you do$$bigl(forall xin[0,1]bigr):1+x^{n+1}leqslant1+x^nimpliesint_0^1ln(1+x^{n+1}),mathrm dxleqslantint_0^1ln(1+x^n),mathrm dx,$$since $ln$ is increasing.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 20 '18 at 20:49









José Carlos Santos

151k22123224




151k22123224












  • Aaah, sure... easy and nice!! thx a lot!
    – Numbers
    Nov 20 '18 at 21:19


















  • Aaah, sure... easy and nice!! thx a lot!
    – Numbers
    Nov 20 '18 at 21:19
















Aaah, sure... easy and nice!! thx a lot!
– Numbers
Nov 20 '18 at 21:19




Aaah, sure... easy and nice!! thx a lot!
– Numbers
Nov 20 '18 at 21:19


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006865%2fintegral-sequence%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]