How to prove that $r_n=r_{n-1} - frac12 b r_{n-1}^2 $ is asymptotic to $frac{1}{n}$?












0














So my question is:



How do we prove that $r_n=r_{n-1} -frac12 b r_{n-1}^2 $ is asymptotic to $frac{1}{n}$ when we have an offspring distribution $p_i:=P(xi=i)$ and b is the variance
$$b=sum_{igeq 2}i(i-1) p_i< infty$$ and $r_n:=1-q^n(0)$ for $$q^n(x):=q(q^{n-1}(x)), quad q(x):=p_0+p_1x+p_2x^2+ldots,$$
what gives us $$r_1=1-p_0.$$
Also we have
$$sum_{igeq 1}i p_i=1.$$



Best regards!



Edit: In fact it is asymptotic to $frac{2}{bn}$.










share|cite|improve this question




















  • 1




    If $b$ is sufficiently large (say $b = 5$ for $r_1 = 1$) then this will definitely just explode to negative infinity.
    – Mees de Vries
    Nov 20 '18 at 17:31










  • Yeah, right... Mhm. I am reading an old paper from Kolmogorov (On the solution of a problem in biology) and what he says is this: $frac{r_n}{r_{n-1}}=1-frac12 br_{n-1} + O(r_{n-2}^2)$ gives us $r_n sim frac{2}{nb}$. In this special case $b$ is the variance of a critical offspring distribution. $r_n $ is defined by $r_n=1-q^{(n)}(0)$ and $q^{(n+1)}(x):=q(q^n(x))$ for $q^1(x):=p_0+p_1x+p_2x^2+...$.
    – cptflint
    Nov 20 '18 at 17:40












  • This looks true under the form "asymptotic to $K dfrac{1}{n}$" (K=constant) for the very narrow range $b in (0,1)$ (and $r_1 in (0,1)$). Do like (good) journalists : check your sources !
    – Jean Marie
    Nov 20 '18 at 17:45












  • Ok so $r_1in (0,1)$ instead of $[0,1]$, thx! But: $bin(0,1)$ seems like a problem. Kolmogorov only chooses $b>0$. So I am missing something or that's an old fault...
    – cptflint
    Nov 20 '18 at 17:46












  • For $r_1$ it is unimportant, but you cannot say $b in (0,infty)$ : if I take b=3, 4, 5, 6..., the sequence explodes
    – Jean Marie
    Nov 20 '18 at 17:50


















0














So my question is:



How do we prove that $r_n=r_{n-1} -frac12 b r_{n-1}^2 $ is asymptotic to $frac{1}{n}$ when we have an offspring distribution $p_i:=P(xi=i)$ and b is the variance
$$b=sum_{igeq 2}i(i-1) p_i< infty$$ and $r_n:=1-q^n(0)$ for $$q^n(x):=q(q^{n-1}(x)), quad q(x):=p_0+p_1x+p_2x^2+ldots,$$
what gives us $$r_1=1-p_0.$$
Also we have
$$sum_{igeq 1}i p_i=1.$$



Best regards!



Edit: In fact it is asymptotic to $frac{2}{bn}$.










share|cite|improve this question




















  • 1




    If $b$ is sufficiently large (say $b = 5$ for $r_1 = 1$) then this will definitely just explode to negative infinity.
    – Mees de Vries
    Nov 20 '18 at 17:31










  • Yeah, right... Mhm. I am reading an old paper from Kolmogorov (On the solution of a problem in biology) and what he says is this: $frac{r_n}{r_{n-1}}=1-frac12 br_{n-1} + O(r_{n-2}^2)$ gives us $r_n sim frac{2}{nb}$. In this special case $b$ is the variance of a critical offspring distribution. $r_n $ is defined by $r_n=1-q^{(n)}(0)$ and $q^{(n+1)}(x):=q(q^n(x))$ for $q^1(x):=p_0+p_1x+p_2x^2+...$.
    – cptflint
    Nov 20 '18 at 17:40












  • This looks true under the form "asymptotic to $K dfrac{1}{n}$" (K=constant) for the very narrow range $b in (0,1)$ (and $r_1 in (0,1)$). Do like (good) journalists : check your sources !
    – Jean Marie
    Nov 20 '18 at 17:45












  • Ok so $r_1in (0,1)$ instead of $[0,1]$, thx! But: $bin(0,1)$ seems like a problem. Kolmogorov only chooses $b>0$. So I am missing something or that's an old fault...
    – cptflint
    Nov 20 '18 at 17:46












  • For $r_1$ it is unimportant, but you cannot say $b in (0,infty)$ : if I take b=3, 4, 5, 6..., the sequence explodes
    – Jean Marie
    Nov 20 '18 at 17:50
















0












0








0







So my question is:



How do we prove that $r_n=r_{n-1} -frac12 b r_{n-1}^2 $ is asymptotic to $frac{1}{n}$ when we have an offspring distribution $p_i:=P(xi=i)$ and b is the variance
$$b=sum_{igeq 2}i(i-1) p_i< infty$$ and $r_n:=1-q^n(0)$ for $$q^n(x):=q(q^{n-1}(x)), quad q(x):=p_0+p_1x+p_2x^2+ldots,$$
what gives us $$r_1=1-p_0.$$
Also we have
$$sum_{igeq 1}i p_i=1.$$



Best regards!



Edit: In fact it is asymptotic to $frac{2}{bn}$.










share|cite|improve this question















So my question is:



How do we prove that $r_n=r_{n-1} -frac12 b r_{n-1}^2 $ is asymptotic to $frac{1}{n}$ when we have an offspring distribution $p_i:=P(xi=i)$ and b is the variance
$$b=sum_{igeq 2}i(i-1) p_i< infty$$ and $r_n:=1-q^n(0)$ for $$q^n(x):=q(q^{n-1}(x)), quad q(x):=p_0+p_1x+p_2x^2+ldots,$$
what gives us $$r_1=1-p_0.$$
Also we have
$$sum_{igeq 1}i p_i=1.$$



Best regards!



Edit: In fact it is asymptotic to $frac{2}{bn}$.







asymptotics recursion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 '18 at 22:19

























asked Nov 20 '18 at 17:26









cptflint

208




208








  • 1




    If $b$ is sufficiently large (say $b = 5$ for $r_1 = 1$) then this will definitely just explode to negative infinity.
    – Mees de Vries
    Nov 20 '18 at 17:31










  • Yeah, right... Mhm. I am reading an old paper from Kolmogorov (On the solution of a problem in biology) and what he says is this: $frac{r_n}{r_{n-1}}=1-frac12 br_{n-1} + O(r_{n-2}^2)$ gives us $r_n sim frac{2}{nb}$. In this special case $b$ is the variance of a critical offspring distribution. $r_n $ is defined by $r_n=1-q^{(n)}(0)$ and $q^{(n+1)}(x):=q(q^n(x))$ for $q^1(x):=p_0+p_1x+p_2x^2+...$.
    – cptflint
    Nov 20 '18 at 17:40












  • This looks true under the form "asymptotic to $K dfrac{1}{n}$" (K=constant) for the very narrow range $b in (0,1)$ (and $r_1 in (0,1)$). Do like (good) journalists : check your sources !
    – Jean Marie
    Nov 20 '18 at 17:45












  • Ok so $r_1in (0,1)$ instead of $[0,1]$, thx! But: $bin(0,1)$ seems like a problem. Kolmogorov only chooses $b>0$. So I am missing something or that's an old fault...
    – cptflint
    Nov 20 '18 at 17:46












  • For $r_1$ it is unimportant, but you cannot say $b in (0,infty)$ : if I take b=3, 4, 5, 6..., the sequence explodes
    – Jean Marie
    Nov 20 '18 at 17:50
















  • 1




    If $b$ is sufficiently large (say $b = 5$ for $r_1 = 1$) then this will definitely just explode to negative infinity.
    – Mees de Vries
    Nov 20 '18 at 17:31










  • Yeah, right... Mhm. I am reading an old paper from Kolmogorov (On the solution of a problem in biology) and what he says is this: $frac{r_n}{r_{n-1}}=1-frac12 br_{n-1} + O(r_{n-2}^2)$ gives us $r_n sim frac{2}{nb}$. In this special case $b$ is the variance of a critical offspring distribution. $r_n $ is defined by $r_n=1-q^{(n)}(0)$ and $q^{(n+1)}(x):=q(q^n(x))$ for $q^1(x):=p_0+p_1x+p_2x^2+...$.
    – cptflint
    Nov 20 '18 at 17:40












  • This looks true under the form "asymptotic to $K dfrac{1}{n}$" (K=constant) for the very narrow range $b in (0,1)$ (and $r_1 in (0,1)$). Do like (good) journalists : check your sources !
    – Jean Marie
    Nov 20 '18 at 17:45












  • Ok so $r_1in (0,1)$ instead of $[0,1]$, thx! But: $bin(0,1)$ seems like a problem. Kolmogorov only chooses $b>0$. So I am missing something or that's an old fault...
    – cptflint
    Nov 20 '18 at 17:46












  • For $r_1$ it is unimportant, but you cannot say $b in (0,infty)$ : if I take b=3, 4, 5, 6..., the sequence explodes
    – Jean Marie
    Nov 20 '18 at 17:50










1




1




If $b$ is sufficiently large (say $b = 5$ for $r_1 = 1$) then this will definitely just explode to negative infinity.
– Mees de Vries
Nov 20 '18 at 17:31




If $b$ is sufficiently large (say $b = 5$ for $r_1 = 1$) then this will definitely just explode to negative infinity.
– Mees de Vries
Nov 20 '18 at 17:31












Yeah, right... Mhm. I am reading an old paper from Kolmogorov (On the solution of a problem in biology) and what he says is this: $frac{r_n}{r_{n-1}}=1-frac12 br_{n-1} + O(r_{n-2}^2)$ gives us $r_n sim frac{2}{nb}$. In this special case $b$ is the variance of a critical offspring distribution. $r_n $ is defined by $r_n=1-q^{(n)}(0)$ and $q^{(n+1)}(x):=q(q^n(x))$ for $q^1(x):=p_0+p_1x+p_2x^2+...$.
– cptflint
Nov 20 '18 at 17:40






Yeah, right... Mhm. I am reading an old paper from Kolmogorov (On the solution of a problem in biology) and what he says is this: $frac{r_n}{r_{n-1}}=1-frac12 br_{n-1} + O(r_{n-2}^2)$ gives us $r_n sim frac{2}{nb}$. In this special case $b$ is the variance of a critical offspring distribution. $r_n $ is defined by $r_n=1-q^{(n)}(0)$ and $q^{(n+1)}(x):=q(q^n(x))$ for $q^1(x):=p_0+p_1x+p_2x^2+...$.
– cptflint
Nov 20 '18 at 17:40














This looks true under the form "asymptotic to $K dfrac{1}{n}$" (K=constant) for the very narrow range $b in (0,1)$ (and $r_1 in (0,1)$). Do like (good) journalists : check your sources !
– Jean Marie
Nov 20 '18 at 17:45






This looks true under the form "asymptotic to $K dfrac{1}{n}$" (K=constant) for the very narrow range $b in (0,1)$ (and $r_1 in (0,1)$). Do like (good) journalists : check your sources !
– Jean Marie
Nov 20 '18 at 17:45














Ok so $r_1in (0,1)$ instead of $[0,1]$, thx! But: $bin(0,1)$ seems like a problem. Kolmogorov only chooses $b>0$. So I am missing something or that's an old fault...
– cptflint
Nov 20 '18 at 17:46






Ok so $r_1in (0,1)$ instead of $[0,1]$, thx! But: $bin(0,1)$ seems like a problem. Kolmogorov only chooses $b>0$. So I am missing something or that's an old fault...
– cptflint
Nov 20 '18 at 17:46














For $r_1$ it is unimportant, but you cannot say $b in (0,infty)$ : if I take b=3, 4, 5, 6..., the sequence explodes
– Jean Marie
Nov 20 '18 at 17:50






For $r_1$ it is unimportant, but you cannot say $b in (0,infty)$ : if I take b=3, 4, 5, 6..., the sequence explodes
– Jean Marie
Nov 20 '18 at 17:50












1 Answer
1






active

oldest

votes


















0














Write $q(x) = mathbf{E}[x^{xi}]$. If $mathbf{E}[xi] = 1$ and $b = mathbf{Var}(xi) in (0, infty)$, then




  • $r_n = 1 - q^{circ n}(0)$ solves $r_n = 1 - q(1 - r_{n-1})$, hence decreases to $0$ as $ntoinfty$.


  • By the Taylor's theorem, $1-q(1-h) = h - left(frac{b}{2}+o(1)right)h^2$.



So, if we write $a_n = frac{1}{r_n}$, then



$$a_{n}
= a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1}
= a_{n-1} + frac{b}{2} + o(1). $$



Using this, we can prove that $a_n = left( frac{b}{2} + o(1) right) n$ as $ntoinfty$.






share|cite|improve this answer





















  • How do you get $a_{n} = a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1} = a_{n-1} + frac{b}{2} + o(1). $? Should it be $a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)$? But I get: $a_n=frac{1}{r_n}= frac{1}{r_{n-1} - frac12 br_{n-1}^2 } = a_{n-1} cdot frac{1}{1 - frac12 br_{n-1} }$
    – cptflint
    Nov 20 '18 at 19:19












  • @cptflint, I utilized $1/(1-x)=1+x+x^2+cdots$.
    – Sangchul Lee
    Nov 20 '18 at 19:23










  • Okay! Thank you!
    – cptflint
    Nov 20 '18 at 19:30










  • Mhm, I think we missed something. In every step we add $a_{n-1}o(1)$ so how can we proove the asymptotic behavior?
    – cptflint
    Nov 21 '18 at 10:48










  • @cptflint, This is a typical application of Stolz–Cesàro theorem. Since $a_n - a_{n-1} to frac{b}{2}$ as $ntoinfty$, by Stolz–Cesàro theorem, $$ lim_{ntoinfty} frac{a_n}{n} = lim_{ntoinfty} frac{a_n - a_{n-1}}{n - (n-1)} = frac{b}{2}. $$
    – Sangchul Lee
    Nov 22 '18 at 1:57











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006618%2fhow-to-prove-that-r-n-r-n-1-frac12-b-r-n-12-is-asymptotic-to-frac1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0














Write $q(x) = mathbf{E}[x^{xi}]$. If $mathbf{E}[xi] = 1$ and $b = mathbf{Var}(xi) in (0, infty)$, then




  • $r_n = 1 - q^{circ n}(0)$ solves $r_n = 1 - q(1 - r_{n-1})$, hence decreases to $0$ as $ntoinfty$.


  • By the Taylor's theorem, $1-q(1-h) = h - left(frac{b}{2}+o(1)right)h^2$.



So, if we write $a_n = frac{1}{r_n}$, then



$$a_{n}
= a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1}
= a_{n-1} + frac{b}{2} + o(1). $$



Using this, we can prove that $a_n = left( frac{b}{2} + o(1) right) n$ as $ntoinfty$.






share|cite|improve this answer





















  • How do you get $a_{n} = a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1} = a_{n-1} + frac{b}{2} + o(1). $? Should it be $a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)$? But I get: $a_n=frac{1}{r_n}= frac{1}{r_{n-1} - frac12 br_{n-1}^2 } = a_{n-1} cdot frac{1}{1 - frac12 br_{n-1} }$
    – cptflint
    Nov 20 '18 at 19:19












  • @cptflint, I utilized $1/(1-x)=1+x+x^2+cdots$.
    – Sangchul Lee
    Nov 20 '18 at 19:23










  • Okay! Thank you!
    – cptflint
    Nov 20 '18 at 19:30










  • Mhm, I think we missed something. In every step we add $a_{n-1}o(1)$ so how can we proove the asymptotic behavior?
    – cptflint
    Nov 21 '18 at 10:48










  • @cptflint, This is a typical application of Stolz–Cesàro theorem. Since $a_n - a_{n-1} to frac{b}{2}$ as $ntoinfty$, by Stolz–Cesàro theorem, $$ lim_{ntoinfty} frac{a_n}{n} = lim_{ntoinfty} frac{a_n - a_{n-1}}{n - (n-1)} = frac{b}{2}. $$
    – Sangchul Lee
    Nov 22 '18 at 1:57
















0














Write $q(x) = mathbf{E}[x^{xi}]$. If $mathbf{E}[xi] = 1$ and $b = mathbf{Var}(xi) in (0, infty)$, then




  • $r_n = 1 - q^{circ n}(0)$ solves $r_n = 1 - q(1 - r_{n-1})$, hence decreases to $0$ as $ntoinfty$.


  • By the Taylor's theorem, $1-q(1-h) = h - left(frac{b}{2}+o(1)right)h^2$.



So, if we write $a_n = frac{1}{r_n}$, then



$$a_{n}
= a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1}
= a_{n-1} + frac{b}{2} + o(1). $$



Using this, we can prove that $a_n = left( frac{b}{2} + o(1) right) n$ as $ntoinfty$.






share|cite|improve this answer





















  • How do you get $a_{n} = a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1} = a_{n-1} + frac{b}{2} + o(1). $? Should it be $a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)$? But I get: $a_n=frac{1}{r_n}= frac{1}{r_{n-1} - frac12 br_{n-1}^2 } = a_{n-1} cdot frac{1}{1 - frac12 br_{n-1} }$
    – cptflint
    Nov 20 '18 at 19:19












  • @cptflint, I utilized $1/(1-x)=1+x+x^2+cdots$.
    – Sangchul Lee
    Nov 20 '18 at 19:23










  • Okay! Thank you!
    – cptflint
    Nov 20 '18 at 19:30










  • Mhm, I think we missed something. In every step we add $a_{n-1}o(1)$ so how can we proove the asymptotic behavior?
    – cptflint
    Nov 21 '18 at 10:48










  • @cptflint, This is a typical application of Stolz–Cesàro theorem. Since $a_n - a_{n-1} to frac{b}{2}$ as $ntoinfty$, by Stolz–Cesàro theorem, $$ lim_{ntoinfty} frac{a_n}{n} = lim_{ntoinfty} frac{a_n - a_{n-1}}{n - (n-1)} = frac{b}{2}. $$
    – Sangchul Lee
    Nov 22 '18 at 1:57














0












0








0






Write $q(x) = mathbf{E}[x^{xi}]$. If $mathbf{E}[xi] = 1$ and $b = mathbf{Var}(xi) in (0, infty)$, then




  • $r_n = 1 - q^{circ n}(0)$ solves $r_n = 1 - q(1 - r_{n-1})$, hence decreases to $0$ as $ntoinfty$.


  • By the Taylor's theorem, $1-q(1-h) = h - left(frac{b}{2}+o(1)right)h^2$.



So, if we write $a_n = frac{1}{r_n}$, then



$$a_{n}
= a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1}
= a_{n-1} + frac{b}{2} + o(1). $$



Using this, we can prove that $a_n = left( frac{b}{2} + o(1) right) n$ as $ntoinfty$.






share|cite|improve this answer












Write $q(x) = mathbf{E}[x^{xi}]$. If $mathbf{E}[xi] = 1$ and $b = mathbf{Var}(xi) in (0, infty)$, then




  • $r_n = 1 - q^{circ n}(0)$ solves $r_n = 1 - q(1 - r_{n-1})$, hence decreases to $0$ as $ntoinfty$.


  • By the Taylor's theorem, $1-q(1-h) = h - left(frac{b}{2}+o(1)right)h^2$.



So, if we write $a_n = frac{1}{r_n}$, then



$$a_{n}
= a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1}
= a_{n-1} + frac{b}{2} + o(1). $$



Using this, we can prove that $a_n = left( frac{b}{2} + o(1) right) n$ as $ntoinfty$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 20 '18 at 19:00









Sangchul Lee

91.4k12164265




91.4k12164265












  • How do you get $a_{n} = a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1} = a_{n-1} + frac{b}{2} + o(1). $? Should it be $a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)$? But I get: $a_n=frac{1}{r_n}= frac{1}{r_{n-1} - frac12 br_{n-1}^2 } = a_{n-1} cdot frac{1}{1 - frac12 br_{n-1} }$
    – cptflint
    Nov 20 '18 at 19:19












  • @cptflint, I utilized $1/(1-x)=1+x+x^2+cdots$.
    – Sangchul Lee
    Nov 20 '18 at 19:23










  • Okay! Thank you!
    – cptflint
    Nov 20 '18 at 19:30










  • Mhm, I think we missed something. In every step we add $a_{n-1}o(1)$ so how can we proove the asymptotic behavior?
    – cptflint
    Nov 21 '18 at 10:48










  • @cptflint, This is a typical application of Stolz–Cesàro theorem. Since $a_n - a_{n-1} to frac{b}{2}$ as $ntoinfty$, by Stolz–Cesàro theorem, $$ lim_{ntoinfty} frac{a_n}{n} = lim_{ntoinfty} frac{a_n - a_{n-1}}{n - (n-1)} = frac{b}{2}. $$
    – Sangchul Lee
    Nov 22 '18 at 1:57


















  • How do you get $a_{n} = a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1} = a_{n-1} + frac{b}{2} + o(1). $? Should it be $a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)$? But I get: $a_n=frac{1}{r_n}= frac{1}{r_{n-1} - frac12 br_{n-1}^2 } = a_{n-1} cdot frac{1}{1 - frac12 br_{n-1} }$
    – cptflint
    Nov 20 '18 at 19:19












  • @cptflint, I utilized $1/(1-x)=1+x+x^2+cdots$.
    – Sangchul Lee
    Nov 20 '18 at 19:23










  • Okay! Thank you!
    – cptflint
    Nov 20 '18 at 19:30










  • Mhm, I think we missed something. In every step we add $a_{n-1}o(1)$ so how can we proove the asymptotic behavior?
    – cptflint
    Nov 21 '18 at 10:48










  • @cptflint, This is a typical application of Stolz–Cesàro theorem. Since $a_n - a_{n-1} to frac{b}{2}$ as $ntoinfty$, by Stolz–Cesàro theorem, $$ lim_{ntoinfty} frac{a_n}{n} = lim_{ntoinfty} frac{a_n - a_{n-1}}{n - (n-1)} = frac{b}{2}. $$
    – Sangchul Lee
    Nov 22 '18 at 1:57
















How do you get $a_{n} = a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1} = a_{n-1} + frac{b}{2} + o(1). $? Should it be $a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)$? But I get: $a_n=frac{1}{r_n}= frac{1}{r_{n-1} - frac12 br_{n-1}^2 } = a_{n-1} cdot frac{1}{1 - frac12 br_{n-1} }$
– cptflint
Nov 20 '18 at 19:19






How do you get $a_{n} = a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)^{-1} = a_{n-1} + frac{b}{2} + o(1). $? Should it be $a_{n-1} left( 1 - frac{frac{b}{2}+o(1)}{a_{n-1}} right)$? But I get: $a_n=frac{1}{r_n}= frac{1}{r_{n-1} - frac12 br_{n-1}^2 } = a_{n-1} cdot frac{1}{1 - frac12 br_{n-1} }$
– cptflint
Nov 20 '18 at 19:19














@cptflint, I utilized $1/(1-x)=1+x+x^2+cdots$.
– Sangchul Lee
Nov 20 '18 at 19:23




@cptflint, I utilized $1/(1-x)=1+x+x^2+cdots$.
– Sangchul Lee
Nov 20 '18 at 19:23












Okay! Thank you!
– cptflint
Nov 20 '18 at 19:30




Okay! Thank you!
– cptflint
Nov 20 '18 at 19:30












Mhm, I think we missed something. In every step we add $a_{n-1}o(1)$ so how can we proove the asymptotic behavior?
– cptflint
Nov 21 '18 at 10:48




Mhm, I think we missed something. In every step we add $a_{n-1}o(1)$ so how can we proove the asymptotic behavior?
– cptflint
Nov 21 '18 at 10:48












@cptflint, This is a typical application of Stolz–Cesàro theorem. Since $a_n - a_{n-1} to frac{b}{2}$ as $ntoinfty$, by Stolz–Cesàro theorem, $$ lim_{ntoinfty} frac{a_n}{n} = lim_{ntoinfty} frac{a_n - a_{n-1}}{n - (n-1)} = frac{b}{2}. $$
– Sangchul Lee
Nov 22 '18 at 1:57




@cptflint, This is a typical application of Stolz–Cesàro theorem. Since $a_n - a_{n-1} to frac{b}{2}$ as $ntoinfty$, by Stolz–Cesàro theorem, $$ lim_{ntoinfty} frac{a_n}{n} = lim_{ntoinfty} frac{a_n - a_{n-1}}{n - (n-1)} = frac{b}{2}. $$
– Sangchul Lee
Nov 22 '18 at 1:57


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006618%2fhow-to-prove-that-r-n-r-n-1-frac12-b-r-n-12-is-asymptotic-to-frac1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith