Differentiability of $f$ at the origin
$begingroup$
I have $$
f(x,y) = cases{ dfrac{sin(x^2y^2)^{alpha}}{x^2y+y^3}& if $yne0$ \[6px]
x& if $y=0$ \
}
$$
The function is continuous at zero if $alpha>frac{3}{4}$ and $nabla f(0,0)=(1,0)$ but how can I prove differentiability at zero?
If I use the definition
$$lim_{(h,k)rightarrow(0,0)} frac{dfrac{sin(h^2k^2)^alpha}{k(h^2+k^2)}-h}{sqrt{h^2+k^2}}$$
is complicated.
Can I find a curve where $f$ isn't differentiable for $alpha >frac{3}{4}$?
real-analysis
$endgroup$
add a comment |
$begingroup$
I have $$
f(x,y) = cases{ dfrac{sin(x^2y^2)^{alpha}}{x^2y+y^3}& if $yne0$ \[6px]
x& if $y=0$ \
}
$$
The function is continuous at zero if $alpha>frac{3}{4}$ and $nabla f(0,0)=(1,0)$ but how can I prove differentiability at zero?
If I use the definition
$$lim_{(h,k)rightarrow(0,0)} frac{dfrac{sin(h^2k^2)^alpha}{k(h^2+k^2)}-h}{sqrt{h^2+k^2}}$$
is complicated.
Can I find a curve where $f$ isn't differentiable for $alpha >frac{3}{4}$?
real-analysis
$endgroup$
$begingroup$
I changed my answer; hope it helps.
$endgroup$
– zhw.
Jan 10 at 18:03
add a comment |
$begingroup$
I have $$
f(x,y) = cases{ dfrac{sin(x^2y^2)^{alpha}}{x^2y+y^3}& if $yne0$ \[6px]
x& if $y=0$ \
}
$$
The function is continuous at zero if $alpha>frac{3}{4}$ and $nabla f(0,0)=(1,0)$ but how can I prove differentiability at zero?
If I use the definition
$$lim_{(h,k)rightarrow(0,0)} frac{dfrac{sin(h^2k^2)^alpha}{k(h^2+k^2)}-h}{sqrt{h^2+k^2}}$$
is complicated.
Can I find a curve where $f$ isn't differentiable for $alpha >frac{3}{4}$?
real-analysis
$endgroup$
I have $$
f(x,y) = cases{ dfrac{sin(x^2y^2)^{alpha}}{x^2y+y^3}& if $yne0$ \[6px]
x& if $y=0$ \
}
$$
The function is continuous at zero if $alpha>frac{3}{4}$ and $nabla f(0,0)=(1,0)$ but how can I prove differentiability at zero?
If I use the definition
$$lim_{(h,k)rightarrow(0,0)} frac{dfrac{sin(h^2k^2)^alpha}{k(h^2+k^2)}-h}{sqrt{h^2+k^2}}$$
is complicated.
Can I find a curve where $f$ isn't differentiable for $alpha >frac{3}{4}$?
real-analysis
real-analysis
edited Jan 10 at 14:07


egreg
181k1485203
181k1485203
asked Jan 9 at 21:03
Giulia B.Giulia B.
420211
420211
$begingroup$
I changed my answer; hope it helps.
$endgroup$
– zhw.
Jan 10 at 18:03
add a comment |
$begingroup$
I changed my answer; hope it helps.
$endgroup$
– zhw.
Jan 10 at 18:03
$begingroup$
I changed my answer; hope it helps.
$endgroup$
– zhw.
Jan 10 at 18:03
$begingroup$
I changed my answer; hope it helps.
$endgroup$
– zhw.
Jan 10 at 18:03
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Differentiability is for $alpha> frac{3}{4} $ non only 1.Using the definition is complicate.
$endgroup$
add a comment |
$begingroup$
Suppose we look at $f$ along the curve $(x,x).$ Take your expression and let $h=k=x.$ We get
$$frac{dfrac{sin[(x^4)^alpha]}{x^3}-x}{sqrt{2x^2}}= frac{sin [(x^4)^alpha]}{x^3sqrt 2|x|}-frac{x}{sqrt 2|x|}.$$
This fails to have a limit as $xto 0 $ for $alpha>0,alpha ne 1.$ (Try $3/4<alpha < 1$ first; in this case the expression is unbounded near $0.$)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067942%2fdifferentiability-of-f-at-the-origin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Differentiability is for $alpha> frac{3}{4} $ non only 1.Using the definition is complicate.
$endgroup$
add a comment |
$begingroup$
Differentiability is for $alpha> frac{3}{4} $ non only 1.Using the definition is complicate.
$endgroup$
add a comment |
$begingroup$
Differentiability is for $alpha> frac{3}{4} $ non only 1.Using the definition is complicate.
$endgroup$
Differentiability is for $alpha> frac{3}{4} $ non only 1.Using the definition is complicate.
answered Jan 10 at 6:29
user495707user495707
85
85
add a comment |
add a comment |
$begingroup$
Suppose we look at $f$ along the curve $(x,x).$ Take your expression and let $h=k=x.$ We get
$$frac{dfrac{sin[(x^4)^alpha]}{x^3}-x}{sqrt{2x^2}}= frac{sin [(x^4)^alpha]}{x^3sqrt 2|x|}-frac{x}{sqrt 2|x|}.$$
This fails to have a limit as $xto 0 $ for $alpha>0,alpha ne 1.$ (Try $3/4<alpha < 1$ first; in this case the expression is unbounded near $0.$)
$endgroup$
add a comment |
$begingroup$
Suppose we look at $f$ along the curve $(x,x).$ Take your expression and let $h=k=x.$ We get
$$frac{dfrac{sin[(x^4)^alpha]}{x^3}-x}{sqrt{2x^2}}= frac{sin [(x^4)^alpha]}{x^3sqrt 2|x|}-frac{x}{sqrt 2|x|}.$$
This fails to have a limit as $xto 0 $ for $alpha>0,alpha ne 1.$ (Try $3/4<alpha < 1$ first; in this case the expression is unbounded near $0.$)
$endgroup$
add a comment |
$begingroup$
Suppose we look at $f$ along the curve $(x,x).$ Take your expression and let $h=k=x.$ We get
$$frac{dfrac{sin[(x^4)^alpha]}{x^3}-x}{sqrt{2x^2}}= frac{sin [(x^4)^alpha]}{x^3sqrt 2|x|}-frac{x}{sqrt 2|x|}.$$
This fails to have a limit as $xto 0 $ for $alpha>0,alpha ne 1.$ (Try $3/4<alpha < 1$ first; in this case the expression is unbounded near $0.$)
$endgroup$
Suppose we look at $f$ along the curve $(x,x).$ Take your expression and let $h=k=x.$ We get
$$frac{dfrac{sin[(x^4)^alpha]}{x^3}-x}{sqrt{2x^2}}= frac{sin [(x^4)^alpha]}{x^3sqrt 2|x|}-frac{x}{sqrt 2|x|}.$$
This fails to have a limit as $xto 0 $ for $alpha>0,alpha ne 1.$ (Try $3/4<alpha < 1$ first; in this case the expression is unbounded near $0.$)
edited Jan 10 at 17:59
answered Jan 9 at 22:27


zhw.zhw.
72.6k43175
72.6k43175
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067942%2fdifferentiability-of-f-at-the-origin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I changed my answer; hope it helps.
$endgroup$
– zhw.
Jan 10 at 18:03