Prove the injectivity and differentiability of $x(u,v) = (u cos(v), u sin(v), frac{u^2}{2}).$












0












$begingroup$


Prove the injectivity and differentiability of



$$x(u,v) = (u cos(v), u sin(v), frac{u^2}{2})$$



where $u in (0,infty),$ $v in (0,2pi).$



What I really want to prove is that (U,x) is a simple surface.



where U=(0,inf)x(0,2$pi$)



What I have:
For the injectivity Let (u1,v1),(u2,v2) $epsilon$ U



Got to prove x(u1,v1)=x(u2,v2) $Rightarrow$ (u1,v1)=(u2,v2)



$frac{u1^2}{2}$ = $frac{u2^2}{2}$ $Rightarrow$ u1=$pm$u2



u1*cosv1 = u2*cosv2 $Rightarrow$ ?



u1*senv1 = u2*senv2 $Rightarrow$ ?



And I don't have any clue about how to prove differentiability










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Please show us your work and show us specifically where you got stuck.
    $endgroup$
    – Ted Shifrin
    Jan 9 at 23:33










  • $begingroup$
    Haven't got too much
    $endgroup$
    – Alberto Torrejon Valenzuela
    Jan 9 at 23:43










  • $begingroup$
    click on edit to see a few of the tricks in MathJax.
    $endgroup$
    – zhw.
    Jan 10 at 1:17










  • $begingroup$
    Observe that $u_1, u_2>0$. Thus $frac{u1^2}{2}=frac{u2^2}{2}$ implies $u1=u2$.
    $endgroup$
    – Jens Schwaiger
    Jan 11 at 3:58
















0












$begingroup$


Prove the injectivity and differentiability of



$$x(u,v) = (u cos(v), u sin(v), frac{u^2}{2})$$



where $u in (0,infty),$ $v in (0,2pi).$



What I really want to prove is that (U,x) is a simple surface.



where U=(0,inf)x(0,2$pi$)



What I have:
For the injectivity Let (u1,v1),(u2,v2) $epsilon$ U



Got to prove x(u1,v1)=x(u2,v2) $Rightarrow$ (u1,v1)=(u2,v2)



$frac{u1^2}{2}$ = $frac{u2^2}{2}$ $Rightarrow$ u1=$pm$u2



u1*cosv1 = u2*cosv2 $Rightarrow$ ?



u1*senv1 = u2*senv2 $Rightarrow$ ?



And I don't have any clue about how to prove differentiability










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Please show us your work and show us specifically where you got stuck.
    $endgroup$
    – Ted Shifrin
    Jan 9 at 23:33










  • $begingroup$
    Haven't got too much
    $endgroup$
    – Alberto Torrejon Valenzuela
    Jan 9 at 23:43










  • $begingroup$
    click on edit to see a few of the tricks in MathJax.
    $endgroup$
    – zhw.
    Jan 10 at 1:17










  • $begingroup$
    Observe that $u_1, u_2>0$. Thus $frac{u1^2}{2}=frac{u2^2}{2}$ implies $u1=u2$.
    $endgroup$
    – Jens Schwaiger
    Jan 11 at 3:58














0












0








0





$begingroup$


Prove the injectivity and differentiability of



$$x(u,v) = (u cos(v), u sin(v), frac{u^2}{2})$$



where $u in (0,infty),$ $v in (0,2pi).$



What I really want to prove is that (U,x) is a simple surface.



where U=(0,inf)x(0,2$pi$)



What I have:
For the injectivity Let (u1,v1),(u2,v2) $epsilon$ U



Got to prove x(u1,v1)=x(u2,v2) $Rightarrow$ (u1,v1)=(u2,v2)



$frac{u1^2}{2}$ = $frac{u2^2}{2}$ $Rightarrow$ u1=$pm$u2



u1*cosv1 = u2*cosv2 $Rightarrow$ ?



u1*senv1 = u2*senv2 $Rightarrow$ ?



And I don't have any clue about how to prove differentiability










share|cite|improve this question











$endgroup$




Prove the injectivity and differentiability of



$$x(u,v) = (u cos(v), u sin(v), frac{u^2}{2})$$



where $u in (0,infty),$ $v in (0,2pi).$



What I really want to prove is that (U,x) is a simple surface.



where U=(0,inf)x(0,2$pi$)



What I have:
For the injectivity Let (u1,v1),(u2,v2) $epsilon$ U



Got to prove x(u1,v1)=x(u2,v2) $Rightarrow$ (u1,v1)=(u2,v2)



$frac{u1^2}{2}$ = $frac{u2^2}{2}$ $Rightarrow$ u1=$pm$u2



u1*cosv1 = u2*cosv2 $Rightarrow$ ?



u1*senv1 = u2*senv2 $Rightarrow$ ?



And I don't have any clue about how to prove differentiability







differential-geometry surfaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 10 at 1:15









zhw.

72.7k43175




72.7k43175










asked Jan 9 at 23:31









Alberto Torrejon ValenzuelaAlberto Torrejon Valenzuela

277




277








  • 2




    $begingroup$
    Please show us your work and show us specifically where you got stuck.
    $endgroup$
    – Ted Shifrin
    Jan 9 at 23:33










  • $begingroup$
    Haven't got too much
    $endgroup$
    – Alberto Torrejon Valenzuela
    Jan 9 at 23:43










  • $begingroup$
    click on edit to see a few of the tricks in MathJax.
    $endgroup$
    – zhw.
    Jan 10 at 1:17










  • $begingroup$
    Observe that $u_1, u_2>0$. Thus $frac{u1^2}{2}=frac{u2^2}{2}$ implies $u1=u2$.
    $endgroup$
    – Jens Schwaiger
    Jan 11 at 3:58














  • 2




    $begingroup$
    Please show us your work and show us specifically where you got stuck.
    $endgroup$
    – Ted Shifrin
    Jan 9 at 23:33










  • $begingroup$
    Haven't got too much
    $endgroup$
    – Alberto Torrejon Valenzuela
    Jan 9 at 23:43










  • $begingroup$
    click on edit to see a few of the tricks in MathJax.
    $endgroup$
    – zhw.
    Jan 10 at 1:17










  • $begingroup$
    Observe that $u_1, u_2>0$. Thus $frac{u1^2}{2}=frac{u2^2}{2}$ implies $u1=u2$.
    $endgroup$
    – Jens Schwaiger
    Jan 11 at 3:58








2




2




$begingroup$
Please show us your work and show us specifically where you got stuck.
$endgroup$
– Ted Shifrin
Jan 9 at 23:33




$begingroup$
Please show us your work and show us specifically where you got stuck.
$endgroup$
– Ted Shifrin
Jan 9 at 23:33












$begingroup$
Haven't got too much
$endgroup$
– Alberto Torrejon Valenzuela
Jan 9 at 23:43




$begingroup$
Haven't got too much
$endgroup$
– Alberto Torrejon Valenzuela
Jan 9 at 23:43












$begingroup$
click on edit to see a few of the tricks in MathJax.
$endgroup$
– zhw.
Jan 10 at 1:17




$begingroup$
click on edit to see a few of the tricks in MathJax.
$endgroup$
– zhw.
Jan 10 at 1:17












$begingroup$
Observe that $u_1, u_2>0$. Thus $frac{u1^2}{2}=frac{u2^2}{2}$ implies $u1=u2$.
$endgroup$
– Jens Schwaiger
Jan 11 at 3:58




$begingroup$
Observe that $u_1, u_2>0$. Thus $frac{u1^2}{2}=frac{u2^2}{2}$ implies $u1=u2$.
$endgroup$
– Jens Schwaiger
Jan 11 at 3:58










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068064%2fprove-the-injectivity-and-differentiability-of-xu-v-u-cosv-u-sinv%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068064%2fprove-the-injectivity-and-differentiability-of-xu-v-u-cosv-u-sinv%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

'app-layout' is not a known element: how to share Component with different Modules

WPF add header to Image with URL pettitions [duplicate]