How to prove that...












10












$begingroup$


How to prove that $$int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx=frac{pi^{2}}{16}-frac{ln^{2}left(sqrt{2}+1right)}{4}?$$



I have encountered this integral recently, and I am aware that one can show how this is true with a substitution $u=ln{x}$ and then expanding it into a series of integrals of the form $int_{0}^{ln{(sqrt{2}+1)}}ue^{-nu}du$ where each integral is then calculated individually, but it feels pretty brute-forced. Is there any other way to do this? Thanks.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The substitution $u=x^2$ turns it into the dilogarithm integral, right?
    $endgroup$
    – Ant
    Jan 10 at 2:29






  • 1




    $begingroup$
    Oops, my bad. The anti-derivative is $frac{1}{4}textrm{Li}_2(1-x^2)-textrm{Li}_2(1-x)$, though, so maybe there's another way...
    $endgroup$
    – Ant
    Jan 10 at 2:46








  • 1




    $begingroup$
    It's straightforward to see how that anti-derivative differentiates to your integrand; so reversing that says that you can re-write your integrand as the sum of two terms (and you need to use $u=x^2$ on one of them). But using the various dilogarithm identities to evaluate at your bounds is tricky.
    $endgroup$
    – Ant
    Jan 10 at 3:01






  • 3




    $begingroup$
    A possible approach $$I=int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx\ =int_{pi/4}^{3pi/8}frac{lntan x}{tan^2x-1}sec^2xdxtext{ (tangent substitution)}\ =int_{pi/4}^{3pi/8}-lntan xsec2xdxtext{ (trig identity)}\ =int_{pi/4}^{3pi/8}-csc2xleft(lncscleft(x-fracpi4right)+lnsinleft(fracpi4+xright)right)dx-frac12ln^2(1+sqrt2)text{ (IBP)}\ =int_{0}^{pi/8}sec2xlncot xdx-frac12ln^2(1+sqrt2)text{ (linear substitution)}\ =int_{0}^{pi/8}sum_{n=0}^inftyfrac{cos(4n+2)x}{2n+1}sec 2xdx-frac12ln^2(1+sqrt2)text{ (Fourier series)}$$
    $endgroup$
    – Kemono Chen
    Jan 10 at 3:43
















10












$begingroup$


How to prove that $$int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx=frac{pi^{2}}{16}-frac{ln^{2}left(sqrt{2}+1right)}{4}?$$



I have encountered this integral recently, and I am aware that one can show how this is true with a substitution $u=ln{x}$ and then expanding it into a series of integrals of the form $int_{0}^{ln{(sqrt{2}+1)}}ue^{-nu}du$ where each integral is then calculated individually, but it feels pretty brute-forced. Is there any other way to do this? Thanks.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The substitution $u=x^2$ turns it into the dilogarithm integral, right?
    $endgroup$
    – Ant
    Jan 10 at 2:29






  • 1




    $begingroup$
    Oops, my bad. The anti-derivative is $frac{1}{4}textrm{Li}_2(1-x^2)-textrm{Li}_2(1-x)$, though, so maybe there's another way...
    $endgroup$
    – Ant
    Jan 10 at 2:46








  • 1




    $begingroup$
    It's straightforward to see how that anti-derivative differentiates to your integrand; so reversing that says that you can re-write your integrand as the sum of two terms (and you need to use $u=x^2$ on one of them). But using the various dilogarithm identities to evaluate at your bounds is tricky.
    $endgroup$
    – Ant
    Jan 10 at 3:01






  • 3




    $begingroup$
    A possible approach $$I=int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx\ =int_{pi/4}^{3pi/8}frac{lntan x}{tan^2x-1}sec^2xdxtext{ (tangent substitution)}\ =int_{pi/4}^{3pi/8}-lntan xsec2xdxtext{ (trig identity)}\ =int_{pi/4}^{3pi/8}-csc2xleft(lncscleft(x-fracpi4right)+lnsinleft(fracpi4+xright)right)dx-frac12ln^2(1+sqrt2)text{ (IBP)}\ =int_{0}^{pi/8}sec2xlncot xdx-frac12ln^2(1+sqrt2)text{ (linear substitution)}\ =int_{0}^{pi/8}sum_{n=0}^inftyfrac{cos(4n+2)x}{2n+1}sec 2xdx-frac12ln^2(1+sqrt2)text{ (Fourier series)}$$
    $endgroup$
    – Kemono Chen
    Jan 10 at 3:43














10












10








10


2



$begingroup$


How to prove that $$int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx=frac{pi^{2}}{16}-frac{ln^{2}left(sqrt{2}+1right)}{4}?$$



I have encountered this integral recently, and I am aware that one can show how this is true with a substitution $u=ln{x}$ and then expanding it into a series of integrals of the form $int_{0}^{ln{(sqrt{2}+1)}}ue^{-nu}du$ where each integral is then calculated individually, but it feels pretty brute-forced. Is there any other way to do this? Thanks.










share|cite|improve this question









$endgroup$




How to prove that $$int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx=frac{pi^{2}}{16}-frac{ln^{2}left(sqrt{2}+1right)}{4}?$$



I have encountered this integral recently, and I am aware that one can show how this is true with a substitution $u=ln{x}$ and then expanding it into a series of integrals of the form $int_{0}^{ln{(sqrt{2}+1)}}ue^{-nu}du$ where each integral is then calculated individually, but it feels pretty brute-forced. Is there any other way to do this? Thanks.







real-analysis calculus integration definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 10 at 2:13









Edward H.Edward H.

1439




1439












  • $begingroup$
    The substitution $u=x^2$ turns it into the dilogarithm integral, right?
    $endgroup$
    – Ant
    Jan 10 at 2:29






  • 1




    $begingroup$
    Oops, my bad. The anti-derivative is $frac{1}{4}textrm{Li}_2(1-x^2)-textrm{Li}_2(1-x)$, though, so maybe there's another way...
    $endgroup$
    – Ant
    Jan 10 at 2:46








  • 1




    $begingroup$
    It's straightforward to see how that anti-derivative differentiates to your integrand; so reversing that says that you can re-write your integrand as the sum of two terms (and you need to use $u=x^2$ on one of them). But using the various dilogarithm identities to evaluate at your bounds is tricky.
    $endgroup$
    – Ant
    Jan 10 at 3:01






  • 3




    $begingroup$
    A possible approach $$I=int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx\ =int_{pi/4}^{3pi/8}frac{lntan x}{tan^2x-1}sec^2xdxtext{ (tangent substitution)}\ =int_{pi/4}^{3pi/8}-lntan xsec2xdxtext{ (trig identity)}\ =int_{pi/4}^{3pi/8}-csc2xleft(lncscleft(x-fracpi4right)+lnsinleft(fracpi4+xright)right)dx-frac12ln^2(1+sqrt2)text{ (IBP)}\ =int_{0}^{pi/8}sec2xlncot xdx-frac12ln^2(1+sqrt2)text{ (linear substitution)}\ =int_{0}^{pi/8}sum_{n=0}^inftyfrac{cos(4n+2)x}{2n+1}sec 2xdx-frac12ln^2(1+sqrt2)text{ (Fourier series)}$$
    $endgroup$
    – Kemono Chen
    Jan 10 at 3:43


















  • $begingroup$
    The substitution $u=x^2$ turns it into the dilogarithm integral, right?
    $endgroup$
    – Ant
    Jan 10 at 2:29






  • 1




    $begingroup$
    Oops, my bad. The anti-derivative is $frac{1}{4}textrm{Li}_2(1-x^2)-textrm{Li}_2(1-x)$, though, so maybe there's another way...
    $endgroup$
    – Ant
    Jan 10 at 2:46








  • 1




    $begingroup$
    It's straightforward to see how that anti-derivative differentiates to your integrand; so reversing that says that you can re-write your integrand as the sum of two terms (and you need to use $u=x^2$ on one of them). But using the various dilogarithm identities to evaluate at your bounds is tricky.
    $endgroup$
    – Ant
    Jan 10 at 3:01






  • 3




    $begingroup$
    A possible approach $$I=int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx\ =int_{pi/4}^{3pi/8}frac{lntan x}{tan^2x-1}sec^2xdxtext{ (tangent substitution)}\ =int_{pi/4}^{3pi/8}-lntan xsec2xdxtext{ (trig identity)}\ =int_{pi/4}^{3pi/8}-csc2xleft(lncscleft(x-fracpi4right)+lnsinleft(fracpi4+xright)right)dx-frac12ln^2(1+sqrt2)text{ (IBP)}\ =int_{0}^{pi/8}sec2xlncot xdx-frac12ln^2(1+sqrt2)text{ (linear substitution)}\ =int_{0}^{pi/8}sum_{n=0}^inftyfrac{cos(4n+2)x}{2n+1}sec 2xdx-frac12ln^2(1+sqrt2)text{ (Fourier series)}$$
    $endgroup$
    – Kemono Chen
    Jan 10 at 3:43
















$begingroup$
The substitution $u=x^2$ turns it into the dilogarithm integral, right?
$endgroup$
– Ant
Jan 10 at 2:29




$begingroup$
The substitution $u=x^2$ turns it into the dilogarithm integral, right?
$endgroup$
– Ant
Jan 10 at 2:29




1




1




$begingroup$
Oops, my bad. The anti-derivative is $frac{1}{4}textrm{Li}_2(1-x^2)-textrm{Li}_2(1-x)$, though, so maybe there's another way...
$endgroup$
– Ant
Jan 10 at 2:46






$begingroup$
Oops, my bad. The anti-derivative is $frac{1}{4}textrm{Li}_2(1-x^2)-textrm{Li}_2(1-x)$, though, so maybe there's another way...
$endgroup$
– Ant
Jan 10 at 2:46






1




1




$begingroup$
It's straightforward to see how that anti-derivative differentiates to your integrand; so reversing that says that you can re-write your integrand as the sum of two terms (and you need to use $u=x^2$ on one of them). But using the various dilogarithm identities to evaluate at your bounds is tricky.
$endgroup$
– Ant
Jan 10 at 3:01




$begingroup$
It's straightforward to see how that anti-derivative differentiates to your integrand; so reversing that says that you can re-write your integrand as the sum of two terms (and you need to use $u=x^2$ on one of them). But using the various dilogarithm identities to evaluate at your bounds is tricky.
$endgroup$
– Ant
Jan 10 at 3:01




3




3




$begingroup$
A possible approach $$I=int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx\ =int_{pi/4}^{3pi/8}frac{lntan x}{tan^2x-1}sec^2xdxtext{ (tangent substitution)}\ =int_{pi/4}^{3pi/8}-lntan xsec2xdxtext{ (trig identity)}\ =int_{pi/4}^{3pi/8}-csc2xleft(lncscleft(x-fracpi4right)+lnsinleft(fracpi4+xright)right)dx-frac12ln^2(1+sqrt2)text{ (IBP)}\ =int_{0}^{pi/8}sec2xlncot xdx-frac12ln^2(1+sqrt2)text{ (linear substitution)}\ =int_{0}^{pi/8}sum_{n=0}^inftyfrac{cos(4n+2)x}{2n+1}sec 2xdx-frac12ln^2(1+sqrt2)text{ (Fourier series)}$$
$endgroup$
– Kemono Chen
Jan 10 at 3:43




$begingroup$
A possible approach $$I=int_{1}^{sqrt{2}+1}frac{ln{x}}{x^{2}-1}dx\ =int_{pi/4}^{3pi/8}frac{lntan x}{tan^2x-1}sec^2xdxtext{ (tangent substitution)}\ =int_{pi/4}^{3pi/8}-lntan xsec2xdxtext{ (trig identity)}\ =int_{pi/4}^{3pi/8}-csc2xleft(lncscleft(x-fracpi4right)+lnsinleft(fracpi4+xright)right)dx-frac12ln^2(1+sqrt2)text{ (IBP)}\ =int_{0}^{pi/8}sec2xlncot xdx-frac12ln^2(1+sqrt2)text{ (linear substitution)}\ =int_{0}^{pi/8}sum_{n=0}^inftyfrac{cos(4n+2)x}{2n+1}sec 2xdx-frac12ln^2(1+sqrt2)text{ (Fourier series)}$$
$endgroup$
– Kemono Chen
Jan 10 at 3:43










3 Answers
3






active

oldest

votes


















9












$begingroup$

Put
begin{equation*}
I=int_{1}^{sqrt{2}+1}dfrac{ln x}{x^2-1}, mathrm{d}x =[x=1/y] = int_{sqrt{2}-1}^{1}dfrac{ln y}{y^2-1}, mathrm{d}y.tag{1}
end{equation*}

After the substitution $ y=frac{1-z}{1+z}$ and integration by parts we have
begin{gather*}
I = int_{0}^{sqrt{2}-1}dfrac{lnleft(frac{1-z}{1+z}right)}{-2z}, mathrm{d}z = left[-dfrac{1}{2}ln(z)lnleft(frac{1-z}{1+z}right)right]_{0}^{sqrt{2}-1}+int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z =\[2ex]-dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z.tag{2}
end{gather*}

If we add (1) and (2) we get
begin{equation*}
2I = -dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{1}dfrac{ln z}{z^2-1}, mathrm{d}z.
end{equation*}

Consequently
begin{gather*}
I = -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}int_{0}^{1}left(sum_{k=0}^{infty}ln(z)z^{2k}right), mathrm{d}z =\[2ex] -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}sum_{k=0}^{infty}int_{0}^{1}ln(z)z^{2k}, mathrm{d}z =\[2ex]
-dfrac{1}{4}ln^2(sqrt{2}+1) +dfrac{1}{2}sum_{k=0}^{infty}dfrac{1}{(2k+1)^2} = dfrac{pi^2}{16} -dfrac{1}{4}ln^2(sqrt{2}+1).
end{gather*}






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Now that is a solution! Very nice (+1)
    $endgroup$
    – omegadot
    Jan 10 at 22:06






  • 1




    $begingroup$
    @ omegadot$ Thank you.
    $endgroup$
    – JanG
    Jan 11 at 5:56



















5












$begingroup$

A Complete Solution Now



Consider
$$F(s)=int_1^sfrac{log x}{x^2-1}mathrm dx$$
Like before,
$$F(s)=frac12int_1^{s}frac{log x}{x-1}mathrm dx-frac12int_1^{s}frac{log x}{x+1}mathrm dx$$
$$F(s)=-frac12mathrm{Li}_2(1-s)-frac12J(s)$$
For $J(s)$, we integrate by parts with $mathrm dv=frac{mathrm dx}{1+x}$ to get
$$J(s)=log(s)log(s+1)-int_1^sfrac{log(1+x)}{x}mathrm dx$$
$$J(s)=log(s)log(s+1)+int_2^{1+s}frac{log x}{1-x}mathrm dx$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(1-x)bigg|_2^{1+s}$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)-mathrm{Li}_2(-1)$$
Using $mathrm{Li}_k(-1)=(2^{1-k}-1)zeta(k)$,
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)+frac{pi^2}{12}$$
Plugging in $s=1+sqrt2$,
$$J(1+sqrt2)=log(1+sqrt2)log(2+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
Which, as The OP noted, becomes
$$J(1+sqrt2)=log^2(1+sqrt2)+frac12log(2)log(1+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
And again as the OP noted,
$$F(1+sqrt2)=-frac{pi^2}{48}-frac14log^2(1+sqrt2)+frac14log2log(1+sqrt2)+frac1{16}log^22+frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)$$
And since
$$frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)=frac{pi^2}{12}-frac14log2log(1+sqrt2)-frac1{16}log^22$$
We have
$$F(1+sqrt2)=frac{pi^2}{16}-frac14log^2(1+sqrt2)$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Evaluating $frac14mathrm{Li}_2(1-x^2)-mathrm{Li}_2(1-x)$ at $x=1$ gives $0$, right?
    $endgroup$
    – Ant
    Jan 10 at 3:07






  • 1




    $begingroup$
    @Ant Right... I'm on it
    $endgroup$
    – clathratus
    Jan 10 at 3:08






  • 1




    $begingroup$
    I think the WolframAlpha result is using equality (6~7) from this MathWorld page
    $endgroup$
    – Edward H.
    Jan 10 at 5:24






  • 1




    $begingroup$
    Seeing @omegadot 's answer I'm thinking that yours can also work, like this: begin{align*} &quadfrac{1}{4}text{Li}_2(-2-2sqrt{2})-text{Li}_2(-sqrt{2})\ &=frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2}+1)ln(sqrt{2}+2)-text{Li}_2(-sqrt{2}-1)+text{Li}_2(-sqrt{2})right)-text{Li}_2(-sqrt{2})\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}text{Li}_2(-sqrt{2}-1)-frac{1}{2}text{Li}_2(-sqrt{2})\ end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:14






  • 1




    $begingroup$
    begin{align*} &quaddots\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}left(-frac{1}{2}ln^2(sqrt{2}+2)-text{Li}_2(frac{1}{sqrt{2}})right)\ &quad-frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2})ln(sqrt{2}+1)+text{Li}_2(1-sqrt{2})-frac{1}{2}text{Li}_2(-1)right)\ &=-frac{pi^2}{48}-frac{1}{4}ln^2(sqrt{2}+1)+frac{1}{4}ln{2}ln(sqrt{2}+1)+frac{1}{16}ln^2{2}+frac{1}{2}text{Li}_2(frac{1}{sqrt{2}})-frac{1}{2}text{Li}_2(1-sqrt{2}) end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:22



















4












$begingroup$

Here is one possible approach.



Enforcing a substitution of $x mapsto 1/x$ to begin with gives
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -int_{sqrt{2}-1}^1 frac{ln x}{1 - x^2} , dx = -sum_{n = 0}^infty int_{sqrt{2} - 1}^1 x^{2n} ln x , dx,
end{align}

where we have taken advantage of the geometric sum for $1/(1 - x^2)$.
Integrating by parts then leads to
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= - ln (1 + sqrt{2}) sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} + sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
&qquad - sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2}. tag1
end{align}



Observing that
$$tanh^{-1} z = sum_{n = 0}^infty frac{z^{2n + 1}}{2n + 1}, qquad |z| < 1, qquad (*)$$
the first of the sums appearing in (1) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} = tanh^{-1} (sqrt{2} - 1) = frac{1}{2} ln (1 + sqrt{2}).$$



To find the second and third sums in (1), divide ($*$) by $x$ before integrating up from $0$ to $x$. Thus
begin{align}
sum_{n = 0}^infty frac{1}{2n + 1} int_0^x t^{2n} , dt &= int_0^x frac{tanh^{-1} t}{t} , dt\
sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} &= frac{1}{2} int_0^x ln left (frac{1 + t}{1 - t} right ) frac{dt}{t}\
&= frac{1}{2} int_0^{-x} frac{ln (1 - t)}{t} , dt - frac{1}{2} int_0^x frac{ln (1 - t)}{t} , dt
end{align}

or
$$sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (x) - operatorname{Li}_2 (-x) right ], qquad (**)$$
where $operatorname{Li}_2 (x)$ is the dilogarithm function.



The second and third sums appearing in (1) can now be found using ($**$). For the second sum, setting $x = 1$ gives
$$sum_{n = 1}^infty frac{1}{(2n + 1)^2} = frac{1}{2} operatorname{Li}_2 (1) - frac{1}{2} operatorname{Li}_2 (-1) = frac{1}{2} left (frac{pi^2}{6} + frac{pi^2}{12} right ) = frac{pi^2}{8},$$
where the well-known special values for the dilogarithm function at 1 and $-1$ have been used.



For the third sum, setting $x = sqrt{2} - 1$ gives
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) right ]. qquad (dagger)$$
It now remains to express the difference between the two dilogarithms is terms of elementary constants.



To do this, we will make use of the following identities for the dilogarithm:
begin{align}
operatorname{Li}_2 (1-x) + operatorname{Li}_2 left (1 - frac{1}{x} right ) &= -frac{1}{2} ln^2 x tag2\
operatorname{Li}_2 (x) + operatorname{Li}_2 (1-x) &= frac{pi^2}{6} - ln x ln (1 - x) tag3\
operatorname{Li}_2 (x) + operatorname{Li}_2 (-x) &= frac{1}{2} operatorname{Li}_2 (x^2) tag4
end{align}

So here we go.
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) &= operatorname{Li}_2 [1 - (2 - sqrt{2})]\
&= -operatorname{Li}_2 left (1 - frac{1}{2 - sqrt{2}} right ) - frac{1}{2} ln^2 (2 - sqrt{2}) qquad text{(by (2))}\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 left (frac{sqrt{2}}{1 + sqrt{2}} right )\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) -frac{1}{2} left [frac{1}{2} ln 2 - ln (1 + sqrt{2}) right ]^2\
&= -operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 + frac{1}{2} ln 2 ln (1 + sqrt{2}) - frac{1}{2} ln^2 (1 + sqrt{2})
end{align}

And
begin{align}
operatorname{Li}_2 (1 - sqrt{2}) &= -operatorname{Li}_2 left (1 - frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 sqrt{2} qquad text{(by (2))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + ln left (frac{1}{sqrt{2}} right ) ln left (1 - frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 qquad text{(by (3))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} -frac{1}{2} ln 2 ln left (frac{1}{sqrt{2}(1 + sqrt{2})} right ) - frac{1}{8} ln^2 2\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 left [frac{1}{2} ln 2 + ln (1 + sqrt{2}) right ] - frac{1}{8} ln^2 2\
&=operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 ln (1 + sqrt{2}) + frac{1}{8} ln^2 2.
end{align}

Thus
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) &= - left [operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) + operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) right ] +frac{pi^2}{6} - frac{1}{2} ln^2 (1 + sqrt{2}) - frac{1}{4} ln^2 2\
&= -frac{1}{2} operatorname{Li}_2 left (frac{1}{2} right ) + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) - frac{1}{4} ln^2 2 qquad text{(by (4))} \
&= -frac{1}{2} left [frac{pi^2}{12} - frac{1}{2} ln^2 2 right ] + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) -frac{1}{4} ln^2 2\
&= frac{pi^2}{8} - frac{1}{2} ln^2 (1 + sqrt{2}).
end{align}

Here the well-known value for the dilogarithm function at $x = 1/2$ has been used.



So the sum in ($dagger$) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}).$$



Putting the final pieces of the puzzle together, (1) becomes
begin{align}
int_{1}^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -frac{1}{2} ln^2 (1 + sqrt{2}) + frac{pi^2}{8} - left [frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}) right ]\
&= frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}),
end{align}

as required.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Actually, the solution can be simplified by using the chi function's known value which is re-proved by you.
    $endgroup$
    – Kemono Chen
    Jan 10 at 8:12












  • $begingroup$
    That is correct, but I thought perhaps the dilogarithm function and some of its special values would be more familiar to work with rather than $chi_2 (x)$, the Legendre chi function of order 2. Some special values for this function are also known and can be found here, one of which is the value I found for ($dagger$), namely $chi_2 (sqrt{2} - 1) = frac{1}{2} [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2})] = frac{pi^2}{16} - frac{1}{4} ln^2(1 + sqrt{2})$.
    $endgroup$
    – omegadot
    Jan 10 at 9:52








  • 1




    $begingroup$
    Really neat! (+1) Good work
    $endgroup$
    – clathratus
    Jan 10 at 15:19











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068155%2fhow-to-prove-that-int-1-sqrt21-frac-lnxx2-1dx-frac-pi2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

Put
begin{equation*}
I=int_{1}^{sqrt{2}+1}dfrac{ln x}{x^2-1}, mathrm{d}x =[x=1/y] = int_{sqrt{2}-1}^{1}dfrac{ln y}{y^2-1}, mathrm{d}y.tag{1}
end{equation*}

After the substitution $ y=frac{1-z}{1+z}$ and integration by parts we have
begin{gather*}
I = int_{0}^{sqrt{2}-1}dfrac{lnleft(frac{1-z}{1+z}right)}{-2z}, mathrm{d}z = left[-dfrac{1}{2}ln(z)lnleft(frac{1-z}{1+z}right)right]_{0}^{sqrt{2}-1}+int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z =\[2ex]-dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z.tag{2}
end{gather*}

If we add (1) and (2) we get
begin{equation*}
2I = -dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{1}dfrac{ln z}{z^2-1}, mathrm{d}z.
end{equation*}

Consequently
begin{gather*}
I = -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}int_{0}^{1}left(sum_{k=0}^{infty}ln(z)z^{2k}right), mathrm{d}z =\[2ex] -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}sum_{k=0}^{infty}int_{0}^{1}ln(z)z^{2k}, mathrm{d}z =\[2ex]
-dfrac{1}{4}ln^2(sqrt{2}+1) +dfrac{1}{2}sum_{k=0}^{infty}dfrac{1}{(2k+1)^2} = dfrac{pi^2}{16} -dfrac{1}{4}ln^2(sqrt{2}+1).
end{gather*}






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Now that is a solution! Very nice (+1)
    $endgroup$
    – omegadot
    Jan 10 at 22:06






  • 1




    $begingroup$
    @ omegadot$ Thank you.
    $endgroup$
    – JanG
    Jan 11 at 5:56
















9












$begingroup$

Put
begin{equation*}
I=int_{1}^{sqrt{2}+1}dfrac{ln x}{x^2-1}, mathrm{d}x =[x=1/y] = int_{sqrt{2}-1}^{1}dfrac{ln y}{y^2-1}, mathrm{d}y.tag{1}
end{equation*}

After the substitution $ y=frac{1-z}{1+z}$ and integration by parts we have
begin{gather*}
I = int_{0}^{sqrt{2}-1}dfrac{lnleft(frac{1-z}{1+z}right)}{-2z}, mathrm{d}z = left[-dfrac{1}{2}ln(z)lnleft(frac{1-z}{1+z}right)right]_{0}^{sqrt{2}-1}+int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z =\[2ex]-dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z.tag{2}
end{gather*}

If we add (1) and (2) we get
begin{equation*}
2I = -dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{1}dfrac{ln z}{z^2-1}, mathrm{d}z.
end{equation*}

Consequently
begin{gather*}
I = -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}int_{0}^{1}left(sum_{k=0}^{infty}ln(z)z^{2k}right), mathrm{d}z =\[2ex] -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}sum_{k=0}^{infty}int_{0}^{1}ln(z)z^{2k}, mathrm{d}z =\[2ex]
-dfrac{1}{4}ln^2(sqrt{2}+1) +dfrac{1}{2}sum_{k=0}^{infty}dfrac{1}{(2k+1)^2} = dfrac{pi^2}{16} -dfrac{1}{4}ln^2(sqrt{2}+1).
end{gather*}






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Now that is a solution! Very nice (+1)
    $endgroup$
    – omegadot
    Jan 10 at 22:06






  • 1




    $begingroup$
    @ omegadot$ Thank you.
    $endgroup$
    – JanG
    Jan 11 at 5:56














9












9








9





$begingroup$

Put
begin{equation*}
I=int_{1}^{sqrt{2}+1}dfrac{ln x}{x^2-1}, mathrm{d}x =[x=1/y] = int_{sqrt{2}-1}^{1}dfrac{ln y}{y^2-1}, mathrm{d}y.tag{1}
end{equation*}

After the substitution $ y=frac{1-z}{1+z}$ and integration by parts we have
begin{gather*}
I = int_{0}^{sqrt{2}-1}dfrac{lnleft(frac{1-z}{1+z}right)}{-2z}, mathrm{d}z = left[-dfrac{1}{2}ln(z)lnleft(frac{1-z}{1+z}right)right]_{0}^{sqrt{2}-1}+int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z =\[2ex]-dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z.tag{2}
end{gather*}

If we add (1) and (2) we get
begin{equation*}
2I = -dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{1}dfrac{ln z}{z^2-1}, mathrm{d}z.
end{equation*}

Consequently
begin{gather*}
I = -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}int_{0}^{1}left(sum_{k=0}^{infty}ln(z)z^{2k}right), mathrm{d}z =\[2ex] -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}sum_{k=0}^{infty}int_{0}^{1}ln(z)z^{2k}, mathrm{d}z =\[2ex]
-dfrac{1}{4}ln^2(sqrt{2}+1) +dfrac{1}{2}sum_{k=0}^{infty}dfrac{1}{(2k+1)^2} = dfrac{pi^2}{16} -dfrac{1}{4}ln^2(sqrt{2}+1).
end{gather*}






share|cite|improve this answer









$endgroup$



Put
begin{equation*}
I=int_{1}^{sqrt{2}+1}dfrac{ln x}{x^2-1}, mathrm{d}x =[x=1/y] = int_{sqrt{2}-1}^{1}dfrac{ln y}{y^2-1}, mathrm{d}y.tag{1}
end{equation*}

After the substitution $ y=frac{1-z}{1+z}$ and integration by parts we have
begin{gather*}
I = int_{0}^{sqrt{2}-1}dfrac{lnleft(frac{1-z}{1+z}right)}{-2z}, mathrm{d}z = left[-dfrac{1}{2}ln(z)lnleft(frac{1-z}{1+z}right)right]_{0}^{sqrt{2}-1}+int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z =\[2ex]-dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{sqrt{2}-1}dfrac{ln z}{z^2-1}, mathrm{d}z.tag{2}
end{gather*}

If we add (1) and (2) we get
begin{equation*}
2I = -dfrac{1}{2}ln^2(sqrt{2}+1) + int_{0}^{1}dfrac{ln z}{z^2-1}, mathrm{d}z.
end{equation*}

Consequently
begin{gather*}
I = -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}int_{0}^{1}left(sum_{k=0}^{infty}ln(z)z^{2k}right), mathrm{d}z =\[2ex] -dfrac{1}{4}ln^2(sqrt{2}+1) -dfrac{1}{2}sum_{k=0}^{infty}int_{0}^{1}ln(z)z^{2k}, mathrm{d}z =\[2ex]
-dfrac{1}{4}ln^2(sqrt{2}+1) +dfrac{1}{2}sum_{k=0}^{infty}dfrac{1}{(2k+1)^2} = dfrac{pi^2}{16} -dfrac{1}{4}ln^2(sqrt{2}+1).
end{gather*}







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 10 at 21:58









JanGJanG

2,802514




2,802514








  • 2




    $begingroup$
    Now that is a solution! Very nice (+1)
    $endgroup$
    – omegadot
    Jan 10 at 22:06






  • 1




    $begingroup$
    @ omegadot$ Thank you.
    $endgroup$
    – JanG
    Jan 11 at 5:56














  • 2




    $begingroup$
    Now that is a solution! Very nice (+1)
    $endgroup$
    – omegadot
    Jan 10 at 22:06






  • 1




    $begingroup$
    @ omegadot$ Thank you.
    $endgroup$
    – JanG
    Jan 11 at 5:56








2




2




$begingroup$
Now that is a solution! Very nice (+1)
$endgroup$
– omegadot
Jan 10 at 22:06




$begingroup$
Now that is a solution! Very nice (+1)
$endgroup$
– omegadot
Jan 10 at 22:06




1




1




$begingroup$
@ omegadot$ Thank you.
$endgroup$
– JanG
Jan 11 at 5:56




$begingroup$
@ omegadot$ Thank you.
$endgroup$
– JanG
Jan 11 at 5:56











5












$begingroup$

A Complete Solution Now



Consider
$$F(s)=int_1^sfrac{log x}{x^2-1}mathrm dx$$
Like before,
$$F(s)=frac12int_1^{s}frac{log x}{x-1}mathrm dx-frac12int_1^{s}frac{log x}{x+1}mathrm dx$$
$$F(s)=-frac12mathrm{Li}_2(1-s)-frac12J(s)$$
For $J(s)$, we integrate by parts with $mathrm dv=frac{mathrm dx}{1+x}$ to get
$$J(s)=log(s)log(s+1)-int_1^sfrac{log(1+x)}{x}mathrm dx$$
$$J(s)=log(s)log(s+1)+int_2^{1+s}frac{log x}{1-x}mathrm dx$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(1-x)bigg|_2^{1+s}$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)-mathrm{Li}_2(-1)$$
Using $mathrm{Li}_k(-1)=(2^{1-k}-1)zeta(k)$,
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)+frac{pi^2}{12}$$
Plugging in $s=1+sqrt2$,
$$J(1+sqrt2)=log(1+sqrt2)log(2+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
Which, as The OP noted, becomes
$$J(1+sqrt2)=log^2(1+sqrt2)+frac12log(2)log(1+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
And again as the OP noted,
$$F(1+sqrt2)=-frac{pi^2}{48}-frac14log^2(1+sqrt2)+frac14log2log(1+sqrt2)+frac1{16}log^22+frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)$$
And since
$$frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)=frac{pi^2}{12}-frac14log2log(1+sqrt2)-frac1{16}log^22$$
We have
$$F(1+sqrt2)=frac{pi^2}{16}-frac14log^2(1+sqrt2)$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Evaluating $frac14mathrm{Li}_2(1-x^2)-mathrm{Li}_2(1-x)$ at $x=1$ gives $0$, right?
    $endgroup$
    – Ant
    Jan 10 at 3:07






  • 1




    $begingroup$
    @Ant Right... I'm on it
    $endgroup$
    – clathratus
    Jan 10 at 3:08






  • 1




    $begingroup$
    I think the WolframAlpha result is using equality (6~7) from this MathWorld page
    $endgroup$
    – Edward H.
    Jan 10 at 5:24






  • 1




    $begingroup$
    Seeing @omegadot 's answer I'm thinking that yours can also work, like this: begin{align*} &quadfrac{1}{4}text{Li}_2(-2-2sqrt{2})-text{Li}_2(-sqrt{2})\ &=frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2}+1)ln(sqrt{2}+2)-text{Li}_2(-sqrt{2}-1)+text{Li}_2(-sqrt{2})right)-text{Li}_2(-sqrt{2})\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}text{Li}_2(-sqrt{2}-1)-frac{1}{2}text{Li}_2(-sqrt{2})\ end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:14






  • 1




    $begingroup$
    begin{align*} &quaddots\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}left(-frac{1}{2}ln^2(sqrt{2}+2)-text{Li}_2(frac{1}{sqrt{2}})right)\ &quad-frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2})ln(sqrt{2}+1)+text{Li}_2(1-sqrt{2})-frac{1}{2}text{Li}_2(-1)right)\ &=-frac{pi^2}{48}-frac{1}{4}ln^2(sqrt{2}+1)+frac{1}{4}ln{2}ln(sqrt{2}+1)+frac{1}{16}ln^2{2}+frac{1}{2}text{Li}_2(frac{1}{sqrt{2}})-frac{1}{2}text{Li}_2(1-sqrt{2}) end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:22
















5












$begingroup$

A Complete Solution Now



Consider
$$F(s)=int_1^sfrac{log x}{x^2-1}mathrm dx$$
Like before,
$$F(s)=frac12int_1^{s}frac{log x}{x-1}mathrm dx-frac12int_1^{s}frac{log x}{x+1}mathrm dx$$
$$F(s)=-frac12mathrm{Li}_2(1-s)-frac12J(s)$$
For $J(s)$, we integrate by parts with $mathrm dv=frac{mathrm dx}{1+x}$ to get
$$J(s)=log(s)log(s+1)-int_1^sfrac{log(1+x)}{x}mathrm dx$$
$$J(s)=log(s)log(s+1)+int_2^{1+s}frac{log x}{1-x}mathrm dx$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(1-x)bigg|_2^{1+s}$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)-mathrm{Li}_2(-1)$$
Using $mathrm{Li}_k(-1)=(2^{1-k}-1)zeta(k)$,
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)+frac{pi^2}{12}$$
Plugging in $s=1+sqrt2$,
$$J(1+sqrt2)=log(1+sqrt2)log(2+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
Which, as The OP noted, becomes
$$J(1+sqrt2)=log^2(1+sqrt2)+frac12log(2)log(1+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
And again as the OP noted,
$$F(1+sqrt2)=-frac{pi^2}{48}-frac14log^2(1+sqrt2)+frac14log2log(1+sqrt2)+frac1{16}log^22+frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)$$
And since
$$frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)=frac{pi^2}{12}-frac14log2log(1+sqrt2)-frac1{16}log^22$$
We have
$$F(1+sqrt2)=frac{pi^2}{16}-frac14log^2(1+sqrt2)$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Evaluating $frac14mathrm{Li}_2(1-x^2)-mathrm{Li}_2(1-x)$ at $x=1$ gives $0$, right?
    $endgroup$
    – Ant
    Jan 10 at 3:07






  • 1




    $begingroup$
    @Ant Right... I'm on it
    $endgroup$
    – clathratus
    Jan 10 at 3:08






  • 1




    $begingroup$
    I think the WolframAlpha result is using equality (6~7) from this MathWorld page
    $endgroup$
    – Edward H.
    Jan 10 at 5:24






  • 1




    $begingroup$
    Seeing @omegadot 's answer I'm thinking that yours can also work, like this: begin{align*} &quadfrac{1}{4}text{Li}_2(-2-2sqrt{2})-text{Li}_2(-sqrt{2})\ &=frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2}+1)ln(sqrt{2}+2)-text{Li}_2(-sqrt{2}-1)+text{Li}_2(-sqrt{2})right)-text{Li}_2(-sqrt{2})\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}text{Li}_2(-sqrt{2}-1)-frac{1}{2}text{Li}_2(-sqrt{2})\ end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:14






  • 1




    $begingroup$
    begin{align*} &quaddots\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}left(-frac{1}{2}ln^2(sqrt{2}+2)-text{Li}_2(frac{1}{sqrt{2}})right)\ &quad-frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2})ln(sqrt{2}+1)+text{Li}_2(1-sqrt{2})-frac{1}{2}text{Li}_2(-1)right)\ &=-frac{pi^2}{48}-frac{1}{4}ln^2(sqrt{2}+1)+frac{1}{4}ln{2}ln(sqrt{2}+1)+frac{1}{16}ln^2{2}+frac{1}{2}text{Li}_2(frac{1}{sqrt{2}})-frac{1}{2}text{Li}_2(1-sqrt{2}) end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:22














5












5








5





$begingroup$

A Complete Solution Now



Consider
$$F(s)=int_1^sfrac{log x}{x^2-1}mathrm dx$$
Like before,
$$F(s)=frac12int_1^{s}frac{log x}{x-1}mathrm dx-frac12int_1^{s}frac{log x}{x+1}mathrm dx$$
$$F(s)=-frac12mathrm{Li}_2(1-s)-frac12J(s)$$
For $J(s)$, we integrate by parts with $mathrm dv=frac{mathrm dx}{1+x}$ to get
$$J(s)=log(s)log(s+1)-int_1^sfrac{log(1+x)}{x}mathrm dx$$
$$J(s)=log(s)log(s+1)+int_2^{1+s}frac{log x}{1-x}mathrm dx$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(1-x)bigg|_2^{1+s}$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)-mathrm{Li}_2(-1)$$
Using $mathrm{Li}_k(-1)=(2^{1-k}-1)zeta(k)$,
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)+frac{pi^2}{12}$$
Plugging in $s=1+sqrt2$,
$$J(1+sqrt2)=log(1+sqrt2)log(2+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
Which, as The OP noted, becomes
$$J(1+sqrt2)=log^2(1+sqrt2)+frac12log(2)log(1+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
And again as the OP noted,
$$F(1+sqrt2)=-frac{pi^2}{48}-frac14log^2(1+sqrt2)+frac14log2log(1+sqrt2)+frac1{16}log^22+frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)$$
And since
$$frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)=frac{pi^2}{12}-frac14log2log(1+sqrt2)-frac1{16}log^22$$
We have
$$F(1+sqrt2)=frac{pi^2}{16}-frac14log^2(1+sqrt2)$$






share|cite|improve this answer











$endgroup$



A Complete Solution Now



Consider
$$F(s)=int_1^sfrac{log x}{x^2-1}mathrm dx$$
Like before,
$$F(s)=frac12int_1^{s}frac{log x}{x-1}mathrm dx-frac12int_1^{s}frac{log x}{x+1}mathrm dx$$
$$F(s)=-frac12mathrm{Li}_2(1-s)-frac12J(s)$$
For $J(s)$, we integrate by parts with $mathrm dv=frac{mathrm dx}{1+x}$ to get
$$J(s)=log(s)log(s+1)-int_1^sfrac{log(1+x)}{x}mathrm dx$$
$$J(s)=log(s)log(s+1)+int_2^{1+s}frac{log x}{1-x}mathrm dx$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(1-x)bigg|_2^{1+s}$$
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)-mathrm{Li}_2(-1)$$
Using $mathrm{Li}_k(-1)=(2^{1-k}-1)zeta(k)$,
$$J(s)=log(s)log(s+1)+mathrm{Li}_2(-s)+frac{pi^2}{12}$$
Plugging in $s=1+sqrt2$,
$$J(1+sqrt2)=log(1+sqrt2)log(2+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
Which, as The OP noted, becomes
$$J(1+sqrt2)=log^2(1+sqrt2)+frac12log(2)log(1+sqrt2)+mathrm{Li}_2(-1-sqrt2)+frac{pi^2}{12}$$
And again as the OP noted,
$$F(1+sqrt2)=-frac{pi^2}{48}-frac14log^2(1+sqrt2)+frac14log2log(1+sqrt2)+frac1{16}log^22+frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)$$
And since
$$frac12mathrm{Li}_2bigg(frac1{sqrt2}bigg)-frac12mathrm{Li}_2(1-sqrt2)=frac{pi^2}{12}-frac14log2log(1+sqrt2)-frac1{16}log^22$$
We have
$$F(1+sqrt2)=frac{pi^2}{16}-frac14log^2(1+sqrt2)$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 10 at 19:32

























answered Jan 10 at 3:02









clathratusclathratus

4,234336




4,234336








  • 1




    $begingroup$
    Evaluating $frac14mathrm{Li}_2(1-x^2)-mathrm{Li}_2(1-x)$ at $x=1$ gives $0$, right?
    $endgroup$
    – Ant
    Jan 10 at 3:07






  • 1




    $begingroup$
    @Ant Right... I'm on it
    $endgroup$
    – clathratus
    Jan 10 at 3:08






  • 1




    $begingroup$
    I think the WolframAlpha result is using equality (6~7) from this MathWorld page
    $endgroup$
    – Edward H.
    Jan 10 at 5:24






  • 1




    $begingroup$
    Seeing @omegadot 's answer I'm thinking that yours can also work, like this: begin{align*} &quadfrac{1}{4}text{Li}_2(-2-2sqrt{2})-text{Li}_2(-sqrt{2})\ &=frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2}+1)ln(sqrt{2}+2)-text{Li}_2(-sqrt{2}-1)+text{Li}_2(-sqrt{2})right)-text{Li}_2(-sqrt{2})\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}text{Li}_2(-sqrt{2}-1)-frac{1}{2}text{Li}_2(-sqrt{2})\ end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:14






  • 1




    $begingroup$
    begin{align*} &quaddots\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}left(-frac{1}{2}ln^2(sqrt{2}+2)-text{Li}_2(frac{1}{sqrt{2}})right)\ &quad-frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2})ln(sqrt{2}+1)+text{Li}_2(1-sqrt{2})-frac{1}{2}text{Li}_2(-1)right)\ &=-frac{pi^2}{48}-frac{1}{4}ln^2(sqrt{2}+1)+frac{1}{4}ln{2}ln(sqrt{2}+1)+frac{1}{16}ln^2{2}+frac{1}{2}text{Li}_2(frac{1}{sqrt{2}})-frac{1}{2}text{Li}_2(1-sqrt{2}) end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:22














  • 1




    $begingroup$
    Evaluating $frac14mathrm{Li}_2(1-x^2)-mathrm{Li}_2(1-x)$ at $x=1$ gives $0$, right?
    $endgroup$
    – Ant
    Jan 10 at 3:07






  • 1




    $begingroup$
    @Ant Right... I'm on it
    $endgroup$
    – clathratus
    Jan 10 at 3:08






  • 1




    $begingroup$
    I think the WolframAlpha result is using equality (6~7) from this MathWorld page
    $endgroup$
    – Edward H.
    Jan 10 at 5:24






  • 1




    $begingroup$
    Seeing @omegadot 's answer I'm thinking that yours can also work, like this: begin{align*} &quadfrac{1}{4}text{Li}_2(-2-2sqrt{2})-text{Li}_2(-sqrt{2})\ &=frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2}+1)ln(sqrt{2}+2)-text{Li}_2(-sqrt{2}-1)+text{Li}_2(-sqrt{2})right)-text{Li}_2(-sqrt{2})\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}text{Li}_2(-sqrt{2}-1)-frac{1}{2}text{Li}_2(-sqrt{2})\ end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:14






  • 1




    $begingroup$
    begin{align*} &quaddots\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}left(-frac{1}{2}ln^2(sqrt{2}+2)-text{Li}_2(frac{1}{sqrt{2}})right)\ &quad-frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2})ln(sqrt{2}+1)+text{Li}_2(1-sqrt{2})-frac{1}{2}text{Li}_2(-1)right)\ &=-frac{pi^2}{48}-frac{1}{4}ln^2(sqrt{2}+1)+frac{1}{4}ln{2}ln(sqrt{2}+1)+frac{1}{16}ln^2{2}+frac{1}{2}text{Li}_2(frac{1}{sqrt{2}})-frac{1}{2}text{Li}_2(1-sqrt{2}) end{align*} (tbc)
    $endgroup$
    – Edward H.
    Jan 10 at 18:22








1




1




$begingroup$
Evaluating $frac14mathrm{Li}_2(1-x^2)-mathrm{Li}_2(1-x)$ at $x=1$ gives $0$, right?
$endgroup$
– Ant
Jan 10 at 3:07




$begingroup$
Evaluating $frac14mathrm{Li}_2(1-x^2)-mathrm{Li}_2(1-x)$ at $x=1$ gives $0$, right?
$endgroup$
– Ant
Jan 10 at 3:07




1




1




$begingroup$
@Ant Right... I'm on it
$endgroup$
– clathratus
Jan 10 at 3:08




$begingroup$
@Ant Right... I'm on it
$endgroup$
– clathratus
Jan 10 at 3:08




1




1




$begingroup$
I think the WolframAlpha result is using equality (6~7) from this MathWorld page
$endgroup$
– Edward H.
Jan 10 at 5:24




$begingroup$
I think the WolframAlpha result is using equality (6~7) from this MathWorld page
$endgroup$
– Edward H.
Jan 10 at 5:24




1




1




$begingroup$
Seeing @omegadot 's answer I'm thinking that yours can also work, like this: begin{align*} &quadfrac{1}{4}text{Li}_2(-2-2sqrt{2})-text{Li}_2(-sqrt{2})\ &=frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2}+1)ln(sqrt{2}+2)-text{Li}_2(-sqrt{2}-1)+text{Li}_2(-sqrt{2})right)-text{Li}_2(-sqrt{2})\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}text{Li}_2(-sqrt{2}-1)-frac{1}{2}text{Li}_2(-sqrt{2})\ end{align*} (tbc)
$endgroup$
– Edward H.
Jan 10 at 18:14




$begingroup$
Seeing @omegadot 's answer I'm thinking that yours can also work, like this: begin{align*} &quadfrac{1}{4}text{Li}_2(-2-2sqrt{2})-text{Li}_2(-sqrt{2})\ &=frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2}+1)ln(sqrt{2}+2)-text{Li}_2(-sqrt{2}-1)+text{Li}_2(-sqrt{2})right)-text{Li}_2(-sqrt{2})\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}text{Li}_2(-sqrt{2}-1)-frac{1}{2}text{Li}_2(-sqrt{2})\ end{align*} (tbc)
$endgroup$
– Edward H.
Jan 10 at 18:14




1




1




$begingroup$
begin{align*} &quaddots\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}left(-frac{1}{2}ln^2(sqrt{2}+2)-text{Li}_2(frac{1}{sqrt{2}})right)\ &quad-frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2})ln(sqrt{2}+1)+text{Li}_2(1-sqrt{2})-frac{1}{2}text{Li}_2(-1)right)\ &=-frac{pi^2}{48}-frac{1}{4}ln^2(sqrt{2}+1)+frac{1}{4}ln{2}ln(sqrt{2}+1)+frac{1}{16}ln^2{2}+frac{1}{2}text{Li}_2(frac{1}{sqrt{2}})-frac{1}{2}text{Li}_2(1-sqrt{2}) end{align*} (tbc)
$endgroup$
– Edward H.
Jan 10 at 18:22




$begingroup$
begin{align*} &quaddots\ &=-frac{pi^2}{24}-frac{1}{2}ln^2(sqrt{2}+1)-frac{1}{4}ln{2}ln(sqrt{2}+1)-frac{1}{2}left(-frac{1}{2}ln^2(sqrt{2}+2)-text{Li}_2(frac{1}{sqrt{2}})right)\ &quad-frac{1}{2}left(-frac{pi^2}{12}-ln(sqrt{2})ln(sqrt{2}+1)+text{Li}_2(1-sqrt{2})-frac{1}{2}text{Li}_2(-1)right)\ &=-frac{pi^2}{48}-frac{1}{4}ln^2(sqrt{2}+1)+frac{1}{4}ln{2}ln(sqrt{2}+1)+frac{1}{16}ln^2{2}+frac{1}{2}text{Li}_2(frac{1}{sqrt{2}})-frac{1}{2}text{Li}_2(1-sqrt{2}) end{align*} (tbc)
$endgroup$
– Edward H.
Jan 10 at 18:22











4












$begingroup$

Here is one possible approach.



Enforcing a substitution of $x mapsto 1/x$ to begin with gives
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -int_{sqrt{2}-1}^1 frac{ln x}{1 - x^2} , dx = -sum_{n = 0}^infty int_{sqrt{2} - 1}^1 x^{2n} ln x , dx,
end{align}

where we have taken advantage of the geometric sum for $1/(1 - x^2)$.
Integrating by parts then leads to
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= - ln (1 + sqrt{2}) sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} + sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
&qquad - sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2}. tag1
end{align}



Observing that
$$tanh^{-1} z = sum_{n = 0}^infty frac{z^{2n + 1}}{2n + 1}, qquad |z| < 1, qquad (*)$$
the first of the sums appearing in (1) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} = tanh^{-1} (sqrt{2} - 1) = frac{1}{2} ln (1 + sqrt{2}).$$



To find the second and third sums in (1), divide ($*$) by $x$ before integrating up from $0$ to $x$. Thus
begin{align}
sum_{n = 0}^infty frac{1}{2n + 1} int_0^x t^{2n} , dt &= int_0^x frac{tanh^{-1} t}{t} , dt\
sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} &= frac{1}{2} int_0^x ln left (frac{1 + t}{1 - t} right ) frac{dt}{t}\
&= frac{1}{2} int_0^{-x} frac{ln (1 - t)}{t} , dt - frac{1}{2} int_0^x frac{ln (1 - t)}{t} , dt
end{align}

or
$$sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (x) - operatorname{Li}_2 (-x) right ], qquad (**)$$
where $operatorname{Li}_2 (x)$ is the dilogarithm function.



The second and third sums appearing in (1) can now be found using ($**$). For the second sum, setting $x = 1$ gives
$$sum_{n = 1}^infty frac{1}{(2n + 1)^2} = frac{1}{2} operatorname{Li}_2 (1) - frac{1}{2} operatorname{Li}_2 (-1) = frac{1}{2} left (frac{pi^2}{6} + frac{pi^2}{12} right ) = frac{pi^2}{8},$$
where the well-known special values for the dilogarithm function at 1 and $-1$ have been used.



For the third sum, setting $x = sqrt{2} - 1$ gives
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) right ]. qquad (dagger)$$
It now remains to express the difference between the two dilogarithms is terms of elementary constants.



To do this, we will make use of the following identities for the dilogarithm:
begin{align}
operatorname{Li}_2 (1-x) + operatorname{Li}_2 left (1 - frac{1}{x} right ) &= -frac{1}{2} ln^2 x tag2\
operatorname{Li}_2 (x) + operatorname{Li}_2 (1-x) &= frac{pi^2}{6} - ln x ln (1 - x) tag3\
operatorname{Li}_2 (x) + operatorname{Li}_2 (-x) &= frac{1}{2} operatorname{Li}_2 (x^2) tag4
end{align}

So here we go.
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) &= operatorname{Li}_2 [1 - (2 - sqrt{2})]\
&= -operatorname{Li}_2 left (1 - frac{1}{2 - sqrt{2}} right ) - frac{1}{2} ln^2 (2 - sqrt{2}) qquad text{(by (2))}\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 left (frac{sqrt{2}}{1 + sqrt{2}} right )\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) -frac{1}{2} left [frac{1}{2} ln 2 - ln (1 + sqrt{2}) right ]^2\
&= -operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 + frac{1}{2} ln 2 ln (1 + sqrt{2}) - frac{1}{2} ln^2 (1 + sqrt{2})
end{align}

And
begin{align}
operatorname{Li}_2 (1 - sqrt{2}) &= -operatorname{Li}_2 left (1 - frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 sqrt{2} qquad text{(by (2))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + ln left (frac{1}{sqrt{2}} right ) ln left (1 - frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 qquad text{(by (3))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} -frac{1}{2} ln 2 ln left (frac{1}{sqrt{2}(1 + sqrt{2})} right ) - frac{1}{8} ln^2 2\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 left [frac{1}{2} ln 2 + ln (1 + sqrt{2}) right ] - frac{1}{8} ln^2 2\
&=operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 ln (1 + sqrt{2}) + frac{1}{8} ln^2 2.
end{align}

Thus
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) &= - left [operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) + operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) right ] +frac{pi^2}{6} - frac{1}{2} ln^2 (1 + sqrt{2}) - frac{1}{4} ln^2 2\
&= -frac{1}{2} operatorname{Li}_2 left (frac{1}{2} right ) + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) - frac{1}{4} ln^2 2 qquad text{(by (4))} \
&= -frac{1}{2} left [frac{pi^2}{12} - frac{1}{2} ln^2 2 right ] + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) -frac{1}{4} ln^2 2\
&= frac{pi^2}{8} - frac{1}{2} ln^2 (1 + sqrt{2}).
end{align}

Here the well-known value for the dilogarithm function at $x = 1/2$ has been used.



So the sum in ($dagger$) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}).$$



Putting the final pieces of the puzzle together, (1) becomes
begin{align}
int_{1}^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -frac{1}{2} ln^2 (1 + sqrt{2}) + frac{pi^2}{8} - left [frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}) right ]\
&= frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}),
end{align}

as required.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Actually, the solution can be simplified by using the chi function's known value which is re-proved by you.
    $endgroup$
    – Kemono Chen
    Jan 10 at 8:12












  • $begingroup$
    That is correct, but I thought perhaps the dilogarithm function and some of its special values would be more familiar to work with rather than $chi_2 (x)$, the Legendre chi function of order 2. Some special values for this function are also known and can be found here, one of which is the value I found for ($dagger$), namely $chi_2 (sqrt{2} - 1) = frac{1}{2} [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2})] = frac{pi^2}{16} - frac{1}{4} ln^2(1 + sqrt{2})$.
    $endgroup$
    – omegadot
    Jan 10 at 9:52








  • 1




    $begingroup$
    Really neat! (+1) Good work
    $endgroup$
    – clathratus
    Jan 10 at 15:19
















4












$begingroup$

Here is one possible approach.



Enforcing a substitution of $x mapsto 1/x$ to begin with gives
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -int_{sqrt{2}-1}^1 frac{ln x}{1 - x^2} , dx = -sum_{n = 0}^infty int_{sqrt{2} - 1}^1 x^{2n} ln x , dx,
end{align}

where we have taken advantage of the geometric sum for $1/(1 - x^2)$.
Integrating by parts then leads to
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= - ln (1 + sqrt{2}) sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} + sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
&qquad - sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2}. tag1
end{align}



Observing that
$$tanh^{-1} z = sum_{n = 0}^infty frac{z^{2n + 1}}{2n + 1}, qquad |z| < 1, qquad (*)$$
the first of the sums appearing in (1) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} = tanh^{-1} (sqrt{2} - 1) = frac{1}{2} ln (1 + sqrt{2}).$$



To find the second and third sums in (1), divide ($*$) by $x$ before integrating up from $0$ to $x$. Thus
begin{align}
sum_{n = 0}^infty frac{1}{2n + 1} int_0^x t^{2n} , dt &= int_0^x frac{tanh^{-1} t}{t} , dt\
sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} &= frac{1}{2} int_0^x ln left (frac{1 + t}{1 - t} right ) frac{dt}{t}\
&= frac{1}{2} int_0^{-x} frac{ln (1 - t)}{t} , dt - frac{1}{2} int_0^x frac{ln (1 - t)}{t} , dt
end{align}

or
$$sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (x) - operatorname{Li}_2 (-x) right ], qquad (**)$$
where $operatorname{Li}_2 (x)$ is the dilogarithm function.



The second and third sums appearing in (1) can now be found using ($**$). For the second sum, setting $x = 1$ gives
$$sum_{n = 1}^infty frac{1}{(2n + 1)^2} = frac{1}{2} operatorname{Li}_2 (1) - frac{1}{2} operatorname{Li}_2 (-1) = frac{1}{2} left (frac{pi^2}{6} + frac{pi^2}{12} right ) = frac{pi^2}{8},$$
where the well-known special values for the dilogarithm function at 1 and $-1$ have been used.



For the third sum, setting $x = sqrt{2} - 1$ gives
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) right ]. qquad (dagger)$$
It now remains to express the difference between the two dilogarithms is terms of elementary constants.



To do this, we will make use of the following identities for the dilogarithm:
begin{align}
operatorname{Li}_2 (1-x) + operatorname{Li}_2 left (1 - frac{1}{x} right ) &= -frac{1}{2} ln^2 x tag2\
operatorname{Li}_2 (x) + operatorname{Li}_2 (1-x) &= frac{pi^2}{6} - ln x ln (1 - x) tag3\
operatorname{Li}_2 (x) + operatorname{Li}_2 (-x) &= frac{1}{2} operatorname{Li}_2 (x^2) tag4
end{align}

So here we go.
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) &= operatorname{Li}_2 [1 - (2 - sqrt{2})]\
&= -operatorname{Li}_2 left (1 - frac{1}{2 - sqrt{2}} right ) - frac{1}{2} ln^2 (2 - sqrt{2}) qquad text{(by (2))}\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 left (frac{sqrt{2}}{1 + sqrt{2}} right )\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) -frac{1}{2} left [frac{1}{2} ln 2 - ln (1 + sqrt{2}) right ]^2\
&= -operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 + frac{1}{2} ln 2 ln (1 + sqrt{2}) - frac{1}{2} ln^2 (1 + sqrt{2})
end{align}

And
begin{align}
operatorname{Li}_2 (1 - sqrt{2}) &= -operatorname{Li}_2 left (1 - frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 sqrt{2} qquad text{(by (2))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + ln left (frac{1}{sqrt{2}} right ) ln left (1 - frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 qquad text{(by (3))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} -frac{1}{2} ln 2 ln left (frac{1}{sqrt{2}(1 + sqrt{2})} right ) - frac{1}{8} ln^2 2\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 left [frac{1}{2} ln 2 + ln (1 + sqrt{2}) right ] - frac{1}{8} ln^2 2\
&=operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 ln (1 + sqrt{2}) + frac{1}{8} ln^2 2.
end{align}

Thus
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) &= - left [operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) + operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) right ] +frac{pi^2}{6} - frac{1}{2} ln^2 (1 + sqrt{2}) - frac{1}{4} ln^2 2\
&= -frac{1}{2} operatorname{Li}_2 left (frac{1}{2} right ) + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) - frac{1}{4} ln^2 2 qquad text{(by (4))} \
&= -frac{1}{2} left [frac{pi^2}{12} - frac{1}{2} ln^2 2 right ] + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) -frac{1}{4} ln^2 2\
&= frac{pi^2}{8} - frac{1}{2} ln^2 (1 + sqrt{2}).
end{align}

Here the well-known value for the dilogarithm function at $x = 1/2$ has been used.



So the sum in ($dagger$) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}).$$



Putting the final pieces of the puzzle together, (1) becomes
begin{align}
int_{1}^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -frac{1}{2} ln^2 (1 + sqrt{2}) + frac{pi^2}{8} - left [frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}) right ]\
&= frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}),
end{align}

as required.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Actually, the solution can be simplified by using the chi function's known value which is re-proved by you.
    $endgroup$
    – Kemono Chen
    Jan 10 at 8:12












  • $begingroup$
    That is correct, but I thought perhaps the dilogarithm function and some of its special values would be more familiar to work with rather than $chi_2 (x)$, the Legendre chi function of order 2. Some special values for this function are also known and can be found here, one of which is the value I found for ($dagger$), namely $chi_2 (sqrt{2} - 1) = frac{1}{2} [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2})] = frac{pi^2}{16} - frac{1}{4} ln^2(1 + sqrt{2})$.
    $endgroup$
    – omegadot
    Jan 10 at 9:52








  • 1




    $begingroup$
    Really neat! (+1) Good work
    $endgroup$
    – clathratus
    Jan 10 at 15:19














4












4








4





$begingroup$

Here is one possible approach.



Enforcing a substitution of $x mapsto 1/x$ to begin with gives
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -int_{sqrt{2}-1}^1 frac{ln x}{1 - x^2} , dx = -sum_{n = 0}^infty int_{sqrt{2} - 1}^1 x^{2n} ln x , dx,
end{align}

where we have taken advantage of the geometric sum for $1/(1 - x^2)$.
Integrating by parts then leads to
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= - ln (1 + sqrt{2}) sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} + sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
&qquad - sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2}. tag1
end{align}



Observing that
$$tanh^{-1} z = sum_{n = 0}^infty frac{z^{2n + 1}}{2n + 1}, qquad |z| < 1, qquad (*)$$
the first of the sums appearing in (1) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} = tanh^{-1} (sqrt{2} - 1) = frac{1}{2} ln (1 + sqrt{2}).$$



To find the second and third sums in (1), divide ($*$) by $x$ before integrating up from $0$ to $x$. Thus
begin{align}
sum_{n = 0}^infty frac{1}{2n + 1} int_0^x t^{2n} , dt &= int_0^x frac{tanh^{-1} t}{t} , dt\
sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} &= frac{1}{2} int_0^x ln left (frac{1 + t}{1 - t} right ) frac{dt}{t}\
&= frac{1}{2} int_0^{-x} frac{ln (1 - t)}{t} , dt - frac{1}{2} int_0^x frac{ln (1 - t)}{t} , dt
end{align}

or
$$sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (x) - operatorname{Li}_2 (-x) right ], qquad (**)$$
where $operatorname{Li}_2 (x)$ is the dilogarithm function.



The second and third sums appearing in (1) can now be found using ($**$). For the second sum, setting $x = 1$ gives
$$sum_{n = 1}^infty frac{1}{(2n + 1)^2} = frac{1}{2} operatorname{Li}_2 (1) - frac{1}{2} operatorname{Li}_2 (-1) = frac{1}{2} left (frac{pi^2}{6} + frac{pi^2}{12} right ) = frac{pi^2}{8},$$
where the well-known special values for the dilogarithm function at 1 and $-1$ have been used.



For the third sum, setting $x = sqrt{2} - 1$ gives
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) right ]. qquad (dagger)$$
It now remains to express the difference between the two dilogarithms is terms of elementary constants.



To do this, we will make use of the following identities for the dilogarithm:
begin{align}
operatorname{Li}_2 (1-x) + operatorname{Li}_2 left (1 - frac{1}{x} right ) &= -frac{1}{2} ln^2 x tag2\
operatorname{Li}_2 (x) + operatorname{Li}_2 (1-x) &= frac{pi^2}{6} - ln x ln (1 - x) tag3\
operatorname{Li}_2 (x) + operatorname{Li}_2 (-x) &= frac{1}{2} operatorname{Li}_2 (x^2) tag4
end{align}

So here we go.
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) &= operatorname{Li}_2 [1 - (2 - sqrt{2})]\
&= -operatorname{Li}_2 left (1 - frac{1}{2 - sqrt{2}} right ) - frac{1}{2} ln^2 (2 - sqrt{2}) qquad text{(by (2))}\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 left (frac{sqrt{2}}{1 + sqrt{2}} right )\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) -frac{1}{2} left [frac{1}{2} ln 2 - ln (1 + sqrt{2}) right ]^2\
&= -operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 + frac{1}{2} ln 2 ln (1 + sqrt{2}) - frac{1}{2} ln^2 (1 + sqrt{2})
end{align}

And
begin{align}
operatorname{Li}_2 (1 - sqrt{2}) &= -operatorname{Li}_2 left (1 - frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 sqrt{2} qquad text{(by (2))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + ln left (frac{1}{sqrt{2}} right ) ln left (1 - frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 qquad text{(by (3))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} -frac{1}{2} ln 2 ln left (frac{1}{sqrt{2}(1 + sqrt{2})} right ) - frac{1}{8} ln^2 2\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 left [frac{1}{2} ln 2 + ln (1 + sqrt{2}) right ] - frac{1}{8} ln^2 2\
&=operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 ln (1 + sqrt{2}) + frac{1}{8} ln^2 2.
end{align}

Thus
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) &= - left [operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) + operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) right ] +frac{pi^2}{6} - frac{1}{2} ln^2 (1 + sqrt{2}) - frac{1}{4} ln^2 2\
&= -frac{1}{2} operatorname{Li}_2 left (frac{1}{2} right ) + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) - frac{1}{4} ln^2 2 qquad text{(by (4))} \
&= -frac{1}{2} left [frac{pi^2}{12} - frac{1}{2} ln^2 2 right ] + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) -frac{1}{4} ln^2 2\
&= frac{pi^2}{8} - frac{1}{2} ln^2 (1 + sqrt{2}).
end{align}

Here the well-known value for the dilogarithm function at $x = 1/2$ has been used.



So the sum in ($dagger$) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}).$$



Putting the final pieces of the puzzle together, (1) becomes
begin{align}
int_{1}^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -frac{1}{2} ln^2 (1 + sqrt{2}) + frac{pi^2}{8} - left [frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}) right ]\
&= frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}),
end{align}

as required.






share|cite|improve this answer











$endgroup$



Here is one possible approach.



Enforcing a substitution of $x mapsto 1/x$ to begin with gives
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -int_{sqrt{2}-1}^1 frac{ln x}{1 - x^2} , dx = -sum_{n = 0}^infty int_{sqrt{2} - 1}^1 x^{2n} ln x , dx,
end{align}

where we have taken advantage of the geometric sum for $1/(1 - x^2)$.
Integrating by parts then leads to
begin{align}
int_1^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= - ln (1 + sqrt{2}) sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} + sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
&qquad - sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2}. tag1
end{align}



Observing that
$$tanh^{-1} z = sum_{n = 0}^infty frac{z^{2n + 1}}{2n + 1}, qquad |z| < 1, qquad (*)$$
the first of the sums appearing in (1) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{2n+1} = tanh^{-1} (sqrt{2} - 1) = frac{1}{2} ln (1 + sqrt{2}).$$



To find the second and third sums in (1), divide ($*$) by $x$ before integrating up from $0$ to $x$. Thus
begin{align}
sum_{n = 0}^infty frac{1}{2n + 1} int_0^x t^{2n} , dt &= int_0^x frac{tanh^{-1} t}{t} , dt\
sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} &= frac{1}{2} int_0^x ln left (frac{1 + t}{1 - t} right ) frac{dt}{t}\
&= frac{1}{2} int_0^{-x} frac{ln (1 - t)}{t} , dt - frac{1}{2} int_0^x frac{ln (1 - t)}{t} , dt
end{align}

or
$$sum_{n = 0}^infty frac{x^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (x) - operatorname{Li}_2 (-x) right ], qquad (**)$$
where $operatorname{Li}_2 (x)$ is the dilogarithm function.



The second and third sums appearing in (1) can now be found using ($**$). For the second sum, setting $x = 1$ gives
$$sum_{n = 1}^infty frac{1}{(2n + 1)^2} = frac{1}{2} operatorname{Li}_2 (1) - frac{1}{2} operatorname{Li}_2 (-1) = frac{1}{2} left (frac{pi^2}{6} + frac{pi^2}{12} right ) = frac{pi^2}{8},$$
where the well-known special values for the dilogarithm function at 1 and $-1$ have been used.



For the third sum, setting $x = sqrt{2} - 1$ gives
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{1}{2} left [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) right ]. qquad (dagger)$$
It now remains to express the difference between the two dilogarithms is terms of elementary constants.



To do this, we will make use of the following identities for the dilogarithm:
begin{align}
operatorname{Li}_2 (1-x) + operatorname{Li}_2 left (1 - frac{1}{x} right ) &= -frac{1}{2} ln^2 x tag2\
operatorname{Li}_2 (x) + operatorname{Li}_2 (1-x) &= frac{pi^2}{6} - ln x ln (1 - x) tag3\
operatorname{Li}_2 (x) + operatorname{Li}_2 (-x) &= frac{1}{2} operatorname{Li}_2 (x^2) tag4
end{align}

So here we go.
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) &= operatorname{Li}_2 [1 - (2 - sqrt{2})]\
&= -operatorname{Li}_2 left (1 - frac{1}{2 - sqrt{2}} right ) - frac{1}{2} ln^2 (2 - sqrt{2}) qquad text{(by (2))}\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 left (frac{sqrt{2}}{1 + sqrt{2}} right )\
&= - operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) -frac{1}{2} left [frac{1}{2} ln 2 - ln (1 + sqrt{2}) right ]^2\
&= -operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 + frac{1}{2} ln 2 ln (1 + sqrt{2}) - frac{1}{2} ln^2 (1 + sqrt{2})
end{align}

And
begin{align}
operatorname{Li}_2 (1 - sqrt{2}) &= -operatorname{Li}_2 left (1 - frac{1}{sqrt{2}} right ) - frac{1}{2} ln^2 sqrt{2} qquad text{(by (2))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + ln left (frac{1}{sqrt{2}} right ) ln left (1 - frac{1}{sqrt{2}} right ) - frac{1}{8} ln^2 2 qquad text{(by (3))}\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} -frac{1}{2} ln 2 ln left (frac{1}{sqrt{2}(1 + sqrt{2})} right ) - frac{1}{8} ln^2 2\
&= operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 left [frac{1}{2} ln 2 + ln (1 + sqrt{2}) right ] - frac{1}{8} ln^2 2\
&=operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) - frac{pi^2}{6} + frac{1}{2} ln 2 ln (1 + sqrt{2}) + frac{1}{8} ln^2 2.
end{align}

Thus
begin{align}
operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2}) &= - left [operatorname{Li}_2 left (frac{1}{sqrt{2}} right ) + operatorname{Li}_2 left (-frac{1}{sqrt{2}} right ) right ] +frac{pi^2}{6} - frac{1}{2} ln^2 (1 + sqrt{2}) - frac{1}{4} ln^2 2\
&= -frac{1}{2} operatorname{Li}_2 left (frac{1}{2} right ) + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) - frac{1}{4} ln^2 2 qquad text{(by (4))} \
&= -frac{1}{2} left [frac{pi^2}{12} - frac{1}{2} ln^2 2 right ] + frac{pi^2}{6} - frac{1}{2} ln^2(1 + sqrt{2}) -frac{1}{4} ln^2 2\
&= frac{pi^2}{8} - frac{1}{2} ln^2 (1 + sqrt{2}).
end{align}

Here the well-known value for the dilogarithm function at $x = 1/2$ has been used.



So the sum in ($dagger$) can be expressed as
$$sum_{n = 0}^infty frac{(sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}).$$



Putting the final pieces of the puzzle together, (1) becomes
begin{align}
int_{1}^{1 + sqrt{2}} frac{ln x}{x^2 - 1} , dx &= -frac{1}{2} ln^2 (1 + sqrt{2}) + frac{pi^2}{8} - left [frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}) right ]\
&= frac{pi^2}{16} - frac{1}{4} ln^2 (1 + sqrt{2}),
end{align}

as required.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 10 at 12:54

























answered Jan 10 at 7:39









omegadotomegadot

5,5402728




5,5402728












  • $begingroup$
    Actually, the solution can be simplified by using the chi function's known value which is re-proved by you.
    $endgroup$
    – Kemono Chen
    Jan 10 at 8:12












  • $begingroup$
    That is correct, but I thought perhaps the dilogarithm function and some of its special values would be more familiar to work with rather than $chi_2 (x)$, the Legendre chi function of order 2. Some special values for this function are also known and can be found here, one of which is the value I found for ($dagger$), namely $chi_2 (sqrt{2} - 1) = frac{1}{2} [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2})] = frac{pi^2}{16} - frac{1}{4} ln^2(1 + sqrt{2})$.
    $endgroup$
    – omegadot
    Jan 10 at 9:52








  • 1




    $begingroup$
    Really neat! (+1) Good work
    $endgroup$
    – clathratus
    Jan 10 at 15:19


















  • $begingroup$
    Actually, the solution can be simplified by using the chi function's known value which is re-proved by you.
    $endgroup$
    – Kemono Chen
    Jan 10 at 8:12












  • $begingroup$
    That is correct, but I thought perhaps the dilogarithm function and some of its special values would be more familiar to work with rather than $chi_2 (x)$, the Legendre chi function of order 2. Some special values for this function are also known and can be found here, one of which is the value I found for ($dagger$), namely $chi_2 (sqrt{2} - 1) = frac{1}{2} [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2})] = frac{pi^2}{16} - frac{1}{4} ln^2(1 + sqrt{2})$.
    $endgroup$
    – omegadot
    Jan 10 at 9:52








  • 1




    $begingroup$
    Really neat! (+1) Good work
    $endgroup$
    – clathratus
    Jan 10 at 15:19
















$begingroup$
Actually, the solution can be simplified by using the chi function's known value which is re-proved by you.
$endgroup$
– Kemono Chen
Jan 10 at 8:12






$begingroup$
Actually, the solution can be simplified by using the chi function's known value which is re-proved by you.
$endgroup$
– Kemono Chen
Jan 10 at 8:12














$begingroup$
That is correct, but I thought perhaps the dilogarithm function and some of its special values would be more familiar to work with rather than $chi_2 (x)$, the Legendre chi function of order 2. Some special values for this function are also known and can be found here, one of which is the value I found for ($dagger$), namely $chi_2 (sqrt{2} - 1) = frac{1}{2} [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2})] = frac{pi^2}{16} - frac{1}{4} ln^2(1 + sqrt{2})$.
$endgroup$
– omegadot
Jan 10 at 9:52






$begingroup$
That is correct, but I thought perhaps the dilogarithm function and some of its special values would be more familiar to work with rather than $chi_2 (x)$, the Legendre chi function of order 2. Some special values for this function are also known and can be found here, one of which is the value I found for ($dagger$), namely $chi_2 (sqrt{2} - 1) = frac{1}{2} [operatorname{Li}_2 (sqrt{2} - 1) - operatorname{Li}_2 (1 - sqrt{2})] = frac{pi^2}{16} - frac{1}{4} ln^2(1 + sqrt{2})$.
$endgroup$
– omegadot
Jan 10 at 9:52






1




1




$begingroup$
Really neat! (+1) Good work
$endgroup$
– clathratus
Jan 10 at 15:19




$begingroup$
Really neat! (+1) Good work
$endgroup$
– clathratus
Jan 10 at 15:19


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068155%2fhow-to-prove-that-int-1-sqrt21-frac-lnxx2-1dx-frac-pi2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

'app-layout' is not a known element: how to share Component with different Modules

WPF add header to Image with URL pettitions [duplicate]