How to calculate the averaged equations for the weakly nonlinear oscillator $ddot x+x+varepsilon (xdot...
$begingroup$
This is Strogatz exercise $7.6.5:$
For the system $ddot x+x+varepsilon h(x,dot x)=0$, where $h(x,dot x)=xdot x^2$ with $0 < ε << 1$, calculate the averaged equations and if possible, solve the averaged equations explicitly for $x(t,ε)$, given the initial conditions $x(0)=a$, $dot x(0)=0$.
ordinary-differential-equations dynamical-systems nonlinear-system non-linear-dynamics
$endgroup$
add a comment |
$begingroup$
This is Strogatz exercise $7.6.5:$
For the system $ddot x+x+varepsilon h(x,dot x)=0$, where $h(x,dot x)=xdot x^2$ with $0 < ε << 1$, calculate the averaged equations and if possible, solve the averaged equations explicitly for $x(t,ε)$, given the initial conditions $x(0)=a$, $dot x(0)=0$.
ordinary-differential-equations dynamical-systems nonlinear-system non-linear-dynamics
$endgroup$
add a comment |
$begingroup$
This is Strogatz exercise $7.6.5:$
For the system $ddot x+x+varepsilon h(x,dot x)=0$, where $h(x,dot x)=xdot x^2$ with $0 < ε << 1$, calculate the averaged equations and if possible, solve the averaged equations explicitly for $x(t,ε)$, given the initial conditions $x(0)=a$, $dot x(0)=0$.
ordinary-differential-equations dynamical-systems nonlinear-system non-linear-dynamics
$endgroup$
This is Strogatz exercise $7.6.5:$
For the system $ddot x+x+varepsilon h(x,dot x)=0$, where $h(x,dot x)=xdot x^2$ with $0 < ε << 1$, calculate the averaged equations and if possible, solve the averaged equations explicitly for $x(t,ε)$, given the initial conditions $x(0)=a$, $dot x(0)=0$.
ordinary-differential-equations dynamical-systems nonlinear-system non-linear-dynamics
ordinary-differential-equations dynamical-systems nonlinear-system non-linear-dynamics
asked Jan 9 at 21:47


HeptapodHeptapod
593317
593317
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$0)$
$$r=sqrt{x^2+y^2},$$
$$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$
$1)$
$$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$
$2)$
$$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$
$$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$
begin{align}
rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
& = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
& = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
& rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
end{align}
begin{align}
rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
& = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
& = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
& = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
& rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
& rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
end{align}
The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.
$3)$
$$x(0)=a,$$
$$dot x(0)=0.$$
$$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$
$$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$
$4)$
$$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$
$endgroup$
add a comment |
$begingroup$
This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
begin{align}
ddot x + x(1+εdot x^2)&=0\[1em]
implies
frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
implies
frac1εln|1+εdot x^2|+x^2 = C
end{align}
For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.
To compute the period, first isolate the derivative
$$
dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
$$
A quarter period then computes as
begin{align}
frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
&=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
&=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
&=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
end{align}
The perturbed frequency is then
$$
frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
$$
Series expansion using the CAS Magma (online calculator), with $z=εa^2$,
PS<z>:=PowerSeriesRing(Rationals());
q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
"frequency factor:",1/iq;
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067986%2fhow-to-calculate-the-averaged-equations-for-the-weakly-nonlinear-oscillator-dd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$0)$
$$r=sqrt{x^2+y^2},$$
$$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$
$1)$
$$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$
$2)$
$$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$
$$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$
begin{align}
rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
& = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
& = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
& rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
end{align}
begin{align}
rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
& = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
& = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
& = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
& rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
& rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
end{align}
The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.
$3)$
$$x(0)=a,$$
$$dot x(0)=0.$$
$$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$
$$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$
$4)$
$$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$
$endgroup$
add a comment |
$begingroup$
$0)$
$$r=sqrt{x^2+y^2},$$
$$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$
$1)$
$$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$
$2)$
$$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$
$$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$
begin{align}
rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
& = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
& = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
& rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
end{align}
begin{align}
rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
& = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
& = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
& = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
& rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
& rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
end{align}
The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.
$3)$
$$x(0)=a,$$
$$dot x(0)=0.$$
$$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$
$$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$
$4)$
$$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$
$endgroup$
add a comment |
$begingroup$
$0)$
$$r=sqrt{x^2+y^2},$$
$$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$
$1)$
$$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$
$2)$
$$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$
$$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$
begin{align}
rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
& = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
& = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
& rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
end{align}
begin{align}
rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
& = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
& = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
& = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
& rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
& rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
end{align}
The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.
$3)$
$$x(0)=a,$$
$$dot x(0)=0.$$
$$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$
$$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$
$4)$
$$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$
$endgroup$
$0)$
$$r=sqrt{x^2+y^2},$$
$$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$
$1)$
$$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$
$2)$
$$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$
$$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$
begin{align}
rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
& = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
& = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
& rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
end{align}
begin{align}
rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
& = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
& = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
& = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
& rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
& rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
end{align}
The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.
$3)$
$$x(0)=a,$$
$$dot x(0)=0.$$
$$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$
$$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$
$4)$
$$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$
edited Jan 10 at 5:39
Dylan
12.7k31026
12.7k31026
answered Jan 9 at 21:47


HeptapodHeptapod
593317
593317
add a comment |
add a comment |
$begingroup$
This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
begin{align}
ddot x + x(1+εdot x^2)&=0\[1em]
implies
frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
implies
frac1εln|1+εdot x^2|+x^2 = C
end{align}
For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.
To compute the period, first isolate the derivative
$$
dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
$$
A quarter period then computes as
begin{align}
frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
&=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
&=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
&=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
end{align}
The perturbed frequency is then
$$
frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
$$
Series expansion using the CAS Magma (online calculator), with $z=εa^2$,
PS<z>:=PowerSeriesRing(Rationals());
q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
"frequency factor:",1/iq;
$endgroup$
add a comment |
$begingroup$
This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
begin{align}
ddot x + x(1+εdot x^2)&=0\[1em]
implies
frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
implies
frac1εln|1+εdot x^2|+x^2 = C
end{align}
For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.
To compute the period, first isolate the derivative
$$
dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
$$
A quarter period then computes as
begin{align}
frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
&=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
&=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
&=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
end{align}
The perturbed frequency is then
$$
frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
$$
Series expansion using the CAS Magma (online calculator), with $z=εa^2$,
PS<z>:=PowerSeriesRing(Rationals());
q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
"frequency factor:",1/iq;
$endgroup$
add a comment |
$begingroup$
This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
begin{align}
ddot x + x(1+εdot x^2)&=0\[1em]
implies
frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
implies
frac1εln|1+εdot x^2|+x^2 = C
end{align}
For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.
To compute the period, first isolate the derivative
$$
dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
$$
A quarter period then computes as
begin{align}
frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
&=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
&=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
&=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
end{align}
The perturbed frequency is then
$$
frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
$$
Series expansion using the CAS Magma (online calculator), with $z=εa^2$,
PS<z>:=PowerSeriesRing(Rationals());
q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
"frequency factor:",1/iq;
$endgroup$
This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
begin{align}
ddot x + x(1+εdot x^2)&=0\[1em]
implies
frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
implies
frac1εln|1+εdot x^2|+x^2 = C
end{align}
For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.
To compute the period, first isolate the derivative
$$
dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
$$
A quarter period then computes as
begin{align}
frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
&=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
&=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
&=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
end{align}
The perturbed frequency is then
$$
frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
$$
Series expansion using the CAS Magma (online calculator), with $z=εa^2$,
PS<z>:=PowerSeriesRing(Rationals());
q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
"frequency factor:",1/iq;
edited Jan 10 at 11:37
answered Jan 10 at 11:20
LutzLLutzL
57.8k42054
57.8k42054
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067986%2fhow-to-calculate-the-averaged-equations-for-the-weakly-nonlinear-oscillator-dd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown