How to calculate the averaged equations for the weakly nonlinear oscillator $ddot x+x+varepsilon (xdot...












-1












$begingroup$


This is Strogatz exercise $7.6.5:$



For the system $ddot x+x+varepsilon h(x,dot x)=0$, where $h(x,dot x)=xdot x^2$ with $0 < ε << 1$, calculate the averaged equations and if possible, solve the averaged equations explicitly for $x(t,ε)$, given the initial conditions $x(0)=a$, $dot x(0)=0$.










share|cite|improve this question









$endgroup$

















    -1












    $begingroup$


    This is Strogatz exercise $7.6.5:$



    For the system $ddot x+x+varepsilon h(x,dot x)=0$, where $h(x,dot x)=xdot x^2$ with $0 < ε << 1$, calculate the averaged equations and if possible, solve the averaged equations explicitly for $x(t,ε)$, given the initial conditions $x(0)=a$, $dot x(0)=0$.










    share|cite|improve this question









    $endgroup$















      -1












      -1








      -1


      2



      $begingroup$


      This is Strogatz exercise $7.6.5:$



      For the system $ddot x+x+varepsilon h(x,dot x)=0$, where $h(x,dot x)=xdot x^2$ with $0 < ε << 1$, calculate the averaged equations and if possible, solve the averaged equations explicitly for $x(t,ε)$, given the initial conditions $x(0)=a$, $dot x(0)=0$.










      share|cite|improve this question









      $endgroup$




      This is Strogatz exercise $7.6.5:$



      For the system $ddot x+x+varepsilon h(x,dot x)=0$, where $h(x,dot x)=xdot x^2$ with $0 < ε << 1$, calculate the averaged equations and if possible, solve the averaged equations explicitly for $x(t,ε)$, given the initial conditions $x(0)=a$, $dot x(0)=0$.







      ordinary-differential-equations dynamical-systems nonlinear-system non-linear-dynamics






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 9 at 21:47









      HeptapodHeptapod

      593317




      593317






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          $0)$



          $$r=sqrt{x^2+y^2},$$



          $$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$



          $1)$



          $$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$



          $2)$



          $$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$



          $$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$



          begin{align}
          rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
          & = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
          & = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
          & rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
          end{align}



          begin{align}
          rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
          & = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
          & = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
          & = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
          & rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
          & rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
          end{align}



          The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.



          $3)$



          $$x(0)=a,$$



          $$dot x(0)=0.$$



          $$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$



          $$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$



          $4)$



          $$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
            begin{align}
            ddot x + x(1+εdot x^2)&=0\[1em]
            implies
            frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
            implies
            frac1εln|1+εdot x^2|+x^2 = C
            end{align}

            For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.





            To compute the period, first isolate the derivative
            $$
            dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
            $$

            A quarter period then computes as
            begin{align}
            frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
            &=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
            &=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
            &=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
            end{align}

            The perturbed frequency is then
            $$
            frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
            $$





            Series expansion using the CAS Magma (online calculator), with $z=εa^2$,



            PS<z>:=PowerSeriesRing(Rationals());
            q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
            iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
            "frequency factor:",1/iq;





            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067986%2fhow-to-calculate-the-averaged-equations-for-the-weakly-nonlinear-oscillator-dd%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              $0)$



              $$r=sqrt{x^2+y^2},$$



              $$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$



              $1)$



              $$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$



              $2)$



              $$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$



              $$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$



              begin{align}
              rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
              & = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
              & = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
              & rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
              end{align}



              begin{align}
              rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
              & = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
              & = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
              & = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
              & rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
              & rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
              end{align}



              The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.



              $3)$



              $$x(0)=a,$$



              $$dot x(0)=0.$$



              $$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$



              $$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$



              $4)$



              $$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                $0)$



                $$r=sqrt{x^2+y^2},$$



                $$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$



                $1)$



                $$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$



                $2)$



                $$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$



                $$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$



                begin{align}
                rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
                & = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
                & = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
                & rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
                end{align}



                begin{align}
                rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
                & = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
                & = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
                & = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
                & rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
                & rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
                end{align}



                The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.



                $3)$



                $$x(0)=a,$$



                $$dot x(0)=0.$$



                $$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$



                $$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$



                $4)$



                $$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $0)$



                  $$r=sqrt{x^2+y^2},$$



                  $$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$



                  $1)$



                  $$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$



                  $2)$



                  $$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$



                  $$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$



                  begin{align}
                  rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
                  & = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
                  & = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
                  & rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
                  end{align}



                  begin{align}
                  rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
                  & = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
                  & = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
                  & = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
                  & rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
                  & rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
                  end{align}



                  The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.



                  $3)$



                  $$x(0)=a,$$



                  $$dot x(0)=0.$$



                  $$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$



                  $$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$



                  $4)$



                  $$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$






                  share|cite|improve this answer











                  $endgroup$



                  $0)$



                  $$r=sqrt{x^2+y^2},$$



                  $$phi=arctanbiggr(frac{y}{x}biggr)-t (theta=t+phirightarrowphi=theta-t).$$



                  $1)$



                  $$h(x,dot x)=xdot x^2=rcos(t+phi)r^2sin^2(t+phi)=r^3cos(t+phi)sin^2(t+phi).$$



                  $2)$



                  $$dot{bar r}=Bigr<varepsilon hsin(t+phi)Bigr>_t,$$



                  $$dot{bar phi}=Bigr<frac{varepsilon h}{r}cos(t+phi)Bigr>_t.$$



                  begin{align}
                  rightarrow dot r & = Bigr<varepsilon r^3cos(t+phi)sin^2(t+phi)Bigr[sin(t+phi)Bigr]Bigr>_t \
                  & = varepsilon r^3Bigr<cos(t+phi)sin^3(t+phi)Bigr>_t \
                  & = varepsilon r^3frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos(t+phi)sin^3(t+phi)dt=0 \
                  & rightarrow dot r=0rightarrow frac{dr}{dt}=0rightarrow dr=0rightarrow r=r_0.
                  end{align}



                  begin{align}
                  rightarrow dot phi & = Bigr<frac{varepsilon}{r} r^3cos(t+phi)sin^2(t+phi)Bigr[cos(t+phi)Bigr]Bigr>_t \
                  & = varepsilon r^2Bigr<cos^2(t+phi)sin^2(t+phi)Bigr>_t \
                  & = varepsilon r^2frac{1}{2pi}displaystyle int_{t-pi}^{t+pi}cos^2(t+phi)sin^2(t+phi)dt \
                  & = varepsilon r^2frac{1}{2pi}frac{pi}{4}=frac{varepsilon r^2}{8} \
                  & rightarrow dot phi= frac{varepsilon r^2}{8}rightarrow frac{dphi}{dt}=frac{varepsilon r^2}{8} \
                  & rightarrow dphi=frac{varepsilon r^2}{8}dt rightarrow phi=frac{varepsilon r^2}{8}t+phi_0.
                  end{align}



                  The amplitude of the closed orbit can be anything and the closed orbit is approximately circular.



                  $3)$



                  $$x(0)=a,$$



                  $$dot x(0)=0.$$



                  $$rightarrow r_0=sqrt{x^2+y^2}=sqrt{0+a^2}=arightarrow r=a.$$



                  $$rightarrow phi_0=arctanBigr(frac{0}{a}Bigr)-0=0rightarrow phi=frac{varepsilon r^2}{8}t.$$



                  $4)$



                  $$x(t)=r(t)cos(t+phi)rightarrow x(t)=acosBigr(t+frac{varepsilon r^2}{8}tBigr).$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 10 at 5:39









                  Dylan

                  12.7k31026




                  12.7k31026










                  answered Jan 9 at 21:47









                  HeptapodHeptapod

                  593317




                  593317























                      1












                      $begingroup$

                      This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
                      begin{align}
                      ddot x + x(1+εdot x^2)&=0\[1em]
                      implies
                      frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
                      implies
                      frac1εln|1+εdot x^2|+x^2 = C
                      end{align}

                      For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.





                      To compute the period, first isolate the derivative
                      $$
                      dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
                      $$

                      A quarter period then computes as
                      begin{align}
                      frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
                      &=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
                      &=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
                      &=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
                      end{align}

                      The perturbed frequency is then
                      $$
                      frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
                      $$





                      Series expansion using the CAS Magma (online calculator), with $z=εa^2$,



                      PS<z>:=PowerSeriesRing(Rationals());
                      q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
                      iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
                      "frequency factor:",1/iq;





                      share|cite|improve this answer











                      $endgroup$


















                        1












                        $begingroup$

                        This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
                        begin{align}
                        ddot x + x(1+εdot x^2)&=0\[1em]
                        implies
                        frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
                        implies
                        frac1εln|1+εdot x^2|+x^2 = C
                        end{align}

                        For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.





                        To compute the period, first isolate the derivative
                        $$
                        dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
                        $$

                        A quarter period then computes as
                        begin{align}
                        frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
                        &=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
                        &=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
                        &=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
                        end{align}

                        The perturbed frequency is then
                        $$
                        frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
                        $$





                        Series expansion using the CAS Magma (online calculator), with $z=εa^2$,



                        PS<z>:=PowerSeriesRing(Rationals());
                        q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
                        iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
                        "frequency factor:",1/iq;





                        share|cite|improve this answer











                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
                          begin{align}
                          ddot x + x(1+εdot x^2)&=0\[1em]
                          implies
                          frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
                          implies
                          frac1εln|1+εdot x^2|+x^2 = C
                          end{align}

                          For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.





                          To compute the period, first isolate the derivative
                          $$
                          dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
                          $$

                          A quarter period then computes as
                          begin{align}
                          frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
                          &=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
                          &=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
                          &=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
                          end{align}

                          The perturbed frequency is then
                          $$
                          frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
                          $$





                          Series expansion using the CAS Magma (online calculator), with $z=εa^2$,



                          PS<z>:=PowerSeriesRing(Rationals());
                          q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
                          iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
                          "frequency factor:",1/iq;





                          share|cite|improve this answer











                          $endgroup$



                          This equation, that is the perturbation term, has a curious structure that allows to find a first integral via
                          begin{align}
                          ddot x + x(1+εdot x^2)&=0\[1em]
                          implies
                          frac{2dot xddot x}{1+εdot x^2}+2xdot x=0\[1em]
                          implies
                          frac1εln|1+εdot x^2|+x^2 = C
                          end{align}

                          For $(x(0),dot x(0))=(a,0)$ this gives $C=a^2$. Thus it is a consequence that the solutions are periodic, follow the level curves of the first integral, the average radius change over a period is zero in all orders of perturbation.





                          To compute the period, first isolate the derivative
                          $$
                          dot x=pmsqrt{frac{exp(ε(a^2-x^2)-1}{ε}}=pmsqrt{a^2-x^2}sqrt{1+fracε2(a^2-x^2)+frac{ε^2}6(a^2-x^2)^2+...}
                          $$

                          A quarter period then computes as
                          begin{align}
                          frac{T}4&=int_0^afrac{sqrtε,dx}{sqrt{exp(ε(a^2-x^2)-1}}\
                          &=int_0^{fracpi2}frac{ds}{sqrt{1+fracε2a^2cos^2s+frac{ε^2}6a^4cos^4s+...}}\
                          &=fracpi2-fracε4a^2int_0^{fracpi2}cos^2s,ds+ frac{ε^2}{96}a^4int_0^{fracpi2}cos^4s,ds + frac{ε^3}{384}a^6int_0^{fracpi2}cos^6s,ds - frac{ε^3}{10240}a^8int_0^{fracpi2}cos^8s,ds mpdots\
                          &=fracpi2left(1-fracε8a^2+ frac{ε^2}{256}a^4 + frac{5ε^3}{6144}a^6 - frac{7ε^4}{262144}a^8mpdotsright)
                          end{align}

                          The perturbed frequency is then
                          $$
                          frac{2pi}{T}=frac{pi/2}{T/4}=1 + frac{ε}8a^2 + frac{3ε^2}{256}a^4 + frac{ε^3}{6144}a^6 - frac{79ε^4}{786432}a^8+dots
                          $$





                          Series expansion using the CAS Magma (online calculator), with $z=εa^2$,



                          PS<z>:=PowerSeriesRing(Rationals());
                          q:=PS!(((Exp(z)-1)/z)^(-1/2));"integrand:",q;
                          iq := PS![ Coefficient(q,k)*Binomial(2*k,k)/4^k : k in [0..19] ]; "period factor:",iq;
                          "frequency factor:",1/iq;






                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jan 10 at 11:37

























                          answered Jan 10 at 11:20









                          LutzLLutzL

                          57.8k42054




                          57.8k42054






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067986%2fhow-to-calculate-the-averaged-equations-for-the-weakly-nonlinear-oscillator-dd%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith