One Sided Approximation for Mixed Derivatives
$begingroup$
Consider the function u(x,y,z)
I am trying to approximate the partial derivative at point (i,j,k) by one sided finite difference method.
Now using one sided 2nd order finite difference approxmation for the first derivative, we have
$u_y(x,y,z) = frac{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}{Delta{y}}$
Now applying this for second derivative, we have
$u_{xy} = frac{3u_y(x,y,z) - 4u_y(x-Delta{x},y,z) + u_y(x-2Delta{x},y,z)}{Delta{x}}$
$ = frac{3[frac{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}{Delta{y}}] - 4[frac{3u(x-Delta{x},y,z) - 4u(x-Delta{x},y-Delta{y},z) + u(x-Delta{x},y-2Delta{y},z)}{Delta{y}} ] + [frac{3u(x-2Delta{x},y,z) - 4u(x-2Delta{x},y-Delta{y},z) + u(x-2Delta{x},y-2Delta{y},z)}{Delta{y}}]}{Delta{x}}$
$ = frac{3[{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}] - 4[{3u(x-Delta{x},y,z) - 4u(x-Delta{x},y-Delta{y},z) + u(x-Delta{x},y-2Delta{y},z)} ] + [{3u(x-2Delta{x},y,z) - 4u(x-2Delta{x},y-Delta{y},z) + u(x-2Delta{x},y-2Delta{y},z)}]}{Delta{x}{Delta{y}}} $
$ = $ resulting exp
My query is that for one sided approximation, is this the simplest form of mixed derivative that is obtainable or have I missed something that simplifies the resulting equation?
numerical-methods partial-derivative finite-differences
$endgroup$
add a comment |
$begingroup$
Consider the function u(x,y,z)
I am trying to approximate the partial derivative at point (i,j,k) by one sided finite difference method.
Now using one sided 2nd order finite difference approxmation for the first derivative, we have
$u_y(x,y,z) = frac{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}{Delta{y}}$
Now applying this for second derivative, we have
$u_{xy} = frac{3u_y(x,y,z) - 4u_y(x-Delta{x},y,z) + u_y(x-2Delta{x},y,z)}{Delta{x}}$
$ = frac{3[frac{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}{Delta{y}}] - 4[frac{3u(x-Delta{x},y,z) - 4u(x-Delta{x},y-Delta{y},z) + u(x-Delta{x},y-2Delta{y},z)}{Delta{y}} ] + [frac{3u(x-2Delta{x},y,z) - 4u(x-2Delta{x},y-Delta{y},z) + u(x-2Delta{x},y-2Delta{y},z)}{Delta{y}}]}{Delta{x}}$
$ = frac{3[{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}] - 4[{3u(x-Delta{x},y,z) - 4u(x-Delta{x},y-Delta{y},z) + u(x-Delta{x},y-2Delta{y},z)} ] + [{3u(x-2Delta{x},y,z) - 4u(x-2Delta{x},y-Delta{y},z) + u(x-2Delta{x},y-2Delta{y},z)}]}{Delta{x}{Delta{y}}} $
$ = $ resulting exp
My query is that for one sided approximation, is this the simplest form of mixed derivative that is obtainable or have I missed something that simplifies the resulting equation?
numerical-methods partial-derivative finite-differences
$endgroup$
add a comment |
$begingroup$
Consider the function u(x,y,z)
I am trying to approximate the partial derivative at point (i,j,k) by one sided finite difference method.
Now using one sided 2nd order finite difference approxmation for the first derivative, we have
$u_y(x,y,z) = frac{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}{Delta{y}}$
Now applying this for second derivative, we have
$u_{xy} = frac{3u_y(x,y,z) - 4u_y(x-Delta{x},y,z) + u_y(x-2Delta{x},y,z)}{Delta{x}}$
$ = frac{3[frac{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}{Delta{y}}] - 4[frac{3u(x-Delta{x},y,z) - 4u(x-Delta{x},y-Delta{y},z) + u(x-Delta{x},y-2Delta{y},z)}{Delta{y}} ] + [frac{3u(x-2Delta{x},y,z) - 4u(x-2Delta{x},y-Delta{y},z) + u(x-2Delta{x},y-2Delta{y},z)}{Delta{y}}]}{Delta{x}}$
$ = frac{3[{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}] - 4[{3u(x-Delta{x},y,z) - 4u(x-Delta{x},y-Delta{y},z) + u(x-Delta{x},y-2Delta{y},z)} ] + [{3u(x-2Delta{x},y,z) - 4u(x-2Delta{x},y-Delta{y},z) + u(x-2Delta{x},y-2Delta{y},z)}]}{Delta{x}{Delta{y}}} $
$ = $ resulting exp
My query is that for one sided approximation, is this the simplest form of mixed derivative that is obtainable or have I missed something that simplifies the resulting equation?
numerical-methods partial-derivative finite-differences
$endgroup$
Consider the function u(x,y,z)
I am trying to approximate the partial derivative at point (i,j,k) by one sided finite difference method.
Now using one sided 2nd order finite difference approxmation for the first derivative, we have
$u_y(x,y,z) = frac{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}{Delta{y}}$
Now applying this for second derivative, we have
$u_{xy} = frac{3u_y(x,y,z) - 4u_y(x-Delta{x},y,z) + u_y(x-2Delta{x},y,z)}{Delta{x}}$
$ = frac{3[frac{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}{Delta{y}}] - 4[frac{3u(x-Delta{x},y,z) - 4u(x-Delta{x},y-Delta{y},z) + u(x-Delta{x},y-2Delta{y},z)}{Delta{y}} ] + [frac{3u(x-2Delta{x},y,z) - 4u(x-2Delta{x},y-Delta{y},z) + u(x-2Delta{x},y-2Delta{y},z)}{Delta{y}}]}{Delta{x}}$
$ = frac{3[{3u(x,y,z) - 4u(x,y-Delta{y},z) + u(x,y-2Delta{y},z)}] - 4[{3u(x-Delta{x},y,z) - 4u(x-Delta{x},y-Delta{y},z) + u(x-Delta{x},y-2Delta{y},z)} ] + [{3u(x-2Delta{x},y,z) - 4u(x-2Delta{x},y-Delta{y},z) + u(x-2Delta{x},y-2Delta{y},z)}]}{Delta{x}{Delta{y}}} $
$ = $ resulting exp
My query is that for one sided approximation, is this the simplest form of mixed derivative that is obtainable or have I missed something that simplifies the resulting equation?
numerical-methods partial-derivative finite-differences
numerical-methods partial-derivative finite-differences
asked Jun 12 '13 at 23:44
rajaditya_mrajaditya_m
427
427
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It's never too late for an answer.
The answer is YES. This is the simplest (=shortest) form of a second order finite difference for the mixed derivative in $x$ and $y$ direction, if you want both directions to be one-sided. (I assume this is what you want, although you are talking about a second derivitive.)
Since you have
$u(x,y,z), (x,y-Delta{y},z), u(x,y-2Delta{y},z), u(x-Delta{x},y,z), u(x-Delta{x},y-Delta{y},z), u(x-Delta{x},y-2Delta{y},z), u(x-2Delta{x},y,z), u(x-2Delta{x},y-Delta{y},z), u(x-2Delta{x},y-2Delta{y},z)$
only once in your representation, there cannot be a shorter (=simpler) one. The only thing you could do is to multiply out the brackets.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f418883%2fone-sided-approximation-for-mixed-derivatives%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It's never too late for an answer.
The answer is YES. This is the simplest (=shortest) form of a second order finite difference for the mixed derivative in $x$ and $y$ direction, if you want both directions to be one-sided. (I assume this is what you want, although you are talking about a second derivitive.)
Since you have
$u(x,y,z), (x,y-Delta{y},z), u(x,y-2Delta{y},z), u(x-Delta{x},y,z), u(x-Delta{x},y-Delta{y},z), u(x-Delta{x},y-2Delta{y},z), u(x-2Delta{x},y,z), u(x-2Delta{x},y-Delta{y},z), u(x-2Delta{x},y-2Delta{y},z)$
only once in your representation, there cannot be a shorter (=simpler) one. The only thing you could do is to multiply out the brackets.
$endgroup$
add a comment |
$begingroup$
It's never too late for an answer.
The answer is YES. This is the simplest (=shortest) form of a second order finite difference for the mixed derivative in $x$ and $y$ direction, if you want both directions to be one-sided. (I assume this is what you want, although you are talking about a second derivitive.)
Since you have
$u(x,y,z), (x,y-Delta{y},z), u(x,y-2Delta{y},z), u(x-Delta{x},y,z), u(x-Delta{x},y-Delta{y},z), u(x-Delta{x},y-2Delta{y},z), u(x-2Delta{x},y,z), u(x-2Delta{x},y-Delta{y},z), u(x-2Delta{x},y-2Delta{y},z)$
only once in your representation, there cannot be a shorter (=simpler) one. The only thing you could do is to multiply out the brackets.
$endgroup$
add a comment |
$begingroup$
It's never too late for an answer.
The answer is YES. This is the simplest (=shortest) form of a second order finite difference for the mixed derivative in $x$ and $y$ direction, if you want both directions to be one-sided. (I assume this is what you want, although you are talking about a second derivitive.)
Since you have
$u(x,y,z), (x,y-Delta{y},z), u(x,y-2Delta{y},z), u(x-Delta{x},y,z), u(x-Delta{x},y-Delta{y},z), u(x-Delta{x},y-2Delta{y},z), u(x-2Delta{x},y,z), u(x-2Delta{x},y-Delta{y},z), u(x-2Delta{x},y-2Delta{y},z)$
only once in your representation, there cannot be a shorter (=simpler) one. The only thing you could do is to multiply out the brackets.
$endgroup$
It's never too late for an answer.
The answer is YES. This is the simplest (=shortest) form of a second order finite difference for the mixed derivative in $x$ and $y$ direction, if you want both directions to be one-sided. (I assume this is what you want, although you are talking about a second derivitive.)
Since you have
$u(x,y,z), (x,y-Delta{y},z), u(x,y-2Delta{y},z), u(x-Delta{x},y,z), u(x-Delta{x},y-Delta{y},z), u(x-Delta{x},y-2Delta{y},z), u(x-2Delta{x},y,z), u(x-2Delta{x},y-Delta{y},z), u(x-2Delta{x},y-2Delta{y},z)$
only once in your representation, there cannot be a shorter (=simpler) one. The only thing you could do is to multiply out the brackets.
edited Jan 13 at 11:13


Hirak
2,57411437
2,57411437
answered Sep 22 '14 at 9:52


RobRob
257110
257110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f418883%2fone-sided-approximation-for-mixed-derivatives%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown