Precalc Trig Identity, verify: $1 + cos(x) + cos(2x) = frac 12 + frac{sin(5x/2)}{2sin(x/2)}$












3












$begingroup$


Working with LHS:



I've tried using the sum to product trig ID to get:



$1 + 2cos(3x/2)cos(x/2)$ from here I've tried a couple of things, but can't seem to get closer. I've tried changing the $(3x/2)$ into $(5x/2 - x)$ and using sum identity, but this just makes things even messier.



I also tried working the RHS. I'm only allowed to use the basic trig ID's: pythag, double and half angle, and sum to product and product to sum.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Working with LHS:



    I've tried using the sum to product trig ID to get:



    $1 + 2cos(3x/2)cos(x/2)$ from here I've tried a couple of things, but can't seem to get closer. I've tried changing the $(3x/2)$ into $(5x/2 - x)$ and using sum identity, but this just makes things even messier.



    I also tried working the RHS. I'm only allowed to use the basic trig ID's: pythag, double and half angle, and sum to product and product to sum.










    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      Working with LHS:



      I've tried using the sum to product trig ID to get:



      $1 + 2cos(3x/2)cos(x/2)$ from here I've tried a couple of things, but can't seem to get closer. I've tried changing the $(3x/2)$ into $(5x/2 - x)$ and using sum identity, but this just makes things even messier.



      I also tried working the RHS. I'm only allowed to use the basic trig ID's: pythag, double and half angle, and sum to product and product to sum.










      share|cite|improve this question











      $endgroup$




      Working with LHS:



      I've tried using the sum to product trig ID to get:



      $1 + 2cos(3x/2)cos(x/2)$ from here I've tried a couple of things, but can't seem to get closer. I've tried changing the $(3x/2)$ into $(5x/2 - x)$ and using sum identity, but this just makes things even messier.



      I also tried working the RHS. I'm only allowed to use the basic trig ID's: pythag, double and half angle, and sum to product and product to sum.







      trigonometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 16 at 3:47









      Andrei

      12.3k21128




      12.3k21128










      asked Jan 16 at 3:32









      McMathMcMath

      456




      456






















          4 Answers
          4






          active

          oldest

          votes


















          1












          $begingroup$

          For $sinfrac{x}{2}neq0$ we obtain:
          $$1+cos{x}+cos2x=frac{2sinfrac{x}{2}+2sinfrac{x}{2}cos{x}+2sinfrac{x}{2}cos2x}{2sinfrac{x}{2}}=$$
          $$=frac{2sinfrac{x}{2}+sinfrac{3x}{2}-sinfrac{x}{2}+sinfrac{5x}{2}-sinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{1}{2}+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$
          I used the following formula.
          $$sinalphacosbeta=frac{1}{2}(sin(alpha+beta)+sin(alpha-beta)).$$
          For example,$$2sinfrac{x}{2}cos{x}=2cdotfrac{1}{2}left(sinleft(frac{x}{2}+xright)+sinleft(frac{x}{2}-xright)right)=sinfrac{3x}{2}-sinfrac{x}{2}.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Can you please explain how you get from step to step. I'm only alloweed to use basic trig IDs. thx
            $endgroup$
            – McMath
            Jan 16 at 14:42










          • $begingroup$
            @McMath I added something. See now.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:47










          • $begingroup$
            oh, and then you're putting all over common denom? I'll give it a shot
            $endgroup$
            – McMath
            Jan 16 at 14:57










          • $begingroup$
            By the same way: $cos{x}=frac{2sinfrac{x}{2}cos{x}}{2sinfrac{x}{2}}$. With $cos2x$ we make the similar thing.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:58












          • $begingroup$
            Finally - understand. Thanks! Do you just play around with the identities or is there a general strategy that lead you to use that identity in the first place?
            $endgroup$
            – McMath
            Jan 16 at 15:06





















          1












          $begingroup$

          Start with the RHS. Notice that



          $$ sin(5x/2) = sin(2x + x/2) = sin 2x cos (x/2) + cos 2x sin (x/2) $$



          Also, notice that



          $$ sin 2x = 2 sin x cos x = 4 sin (x/2) cos (x/2) cos x $$



          Therefore,



          $$ frac{ sin (5x/2) }{2 sin(x/2) } = frac{4 sin (x/2) cos^2 (x/2) cos x + cos 2x sin (x/2)}{2 sin(x/2)} $$



          $$ = 2 cos^2 (x/2) cos x + frac{ cos 2x }{2} $$



          Also, we have that $cos^2 (x/2) = frac{ cos x + 1 }{2}$ and so



          $$ = cos^2 x + cos x + frac{ cos 2x }{2} $$



          $$ = frac{1+cos 2x }{2} + cos x + frac{ cos 2x }{2} $$



          $$ cos x + cos 2x + frac{1}{2} $$$



          add the missing $1/2$ from the RHS and you have the LHS






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            How did you get that cos^2(x/2) = (cosx + 1)/2
            $endgroup$
            – McMath
            Jan 16 at 4:22










          • $begingroup$
            double angle formula $ x = 2 cdot frac{x}{2} $
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:24












          • $begingroup$
            hmm I don't know that double angle formula, I'm aware of cos(2x) = 2cos^2(x) - 1, but you're missing the 1? If I didn't know your version, can I get there from mine? Also how can you just change the 1/2 into a 1?
            $endgroup$
            – McMath
            Jan 16 at 4:29





















          0












          $begingroup$

          Hint:



          Use
          http://mathworld.wolfram.com/WernerFormulas.html



          $2sindfrac x2cos mx=sinleft(m+dfrac12right)x-sinleft(m-dfrac12right)x$



          Set $m=1,2$ and add to find $$2sindfrac x2(cos x+cos2x)=sindfrac{5x}2-sindfrac x2$$



          Assuming $sindfrac x2ne0,$ divide both sides by $2sindfrac x2$



          See also: How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            To be honest, I have no idea how to fit that in... those formulas are listed in my Trig IDs as Product to sum formulas. But it would be more helpful if you give me some step by step guidance.. thx
            $endgroup$
            – McMath
            Jan 16 at 3:57












          • $begingroup$
            McMath: see my answer.
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:04










          • $begingroup$
            @McMath, what if $m=1$ and $m=2?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:16










          • $begingroup$
            if m = 1 I get sin(3x/2) - sin (x/2).... if m =2 I get sin(5x/2) - sin(3x/2) ... but I don't see where this fits in. What are the previous steps???
            $endgroup$
            – McMath
            Jan 16 at 4:38












          • $begingroup$
            @McMath Then $cos x+cos2x=?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:43



















          0












          $begingroup$

          The left-hand side is $$Re(1+e^{ix}+e^{2ix})=Refrac{e^{3ix}-1}{e^{ix}-1}=Refrac{2ie^{3ix/2}sinfrac{3x}{2}}{2ie^{ix/2}sinfrac{x}{2}}=Refrac{2e^{ix}sinfrac{3x}{2}}{2sinfrac{x}{2}}\=frac{2cos xsinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{sinfrac{x}{2}+sinfrac{5x}{2}}{2sinfrac{x}{2}}=frac12+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I've never seen this math formulas. Please explain using only basic trig identities.
            $endgroup$
            – McMath
            Jan 16 at 14:43











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075275%2fprecalc-trig-identity-verify-1-cosx-cos2x-frac-12-frac-sin5%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          For $sinfrac{x}{2}neq0$ we obtain:
          $$1+cos{x}+cos2x=frac{2sinfrac{x}{2}+2sinfrac{x}{2}cos{x}+2sinfrac{x}{2}cos2x}{2sinfrac{x}{2}}=$$
          $$=frac{2sinfrac{x}{2}+sinfrac{3x}{2}-sinfrac{x}{2}+sinfrac{5x}{2}-sinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{1}{2}+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$
          I used the following formula.
          $$sinalphacosbeta=frac{1}{2}(sin(alpha+beta)+sin(alpha-beta)).$$
          For example,$$2sinfrac{x}{2}cos{x}=2cdotfrac{1}{2}left(sinleft(frac{x}{2}+xright)+sinleft(frac{x}{2}-xright)right)=sinfrac{3x}{2}-sinfrac{x}{2}.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Can you please explain how you get from step to step. I'm only alloweed to use basic trig IDs. thx
            $endgroup$
            – McMath
            Jan 16 at 14:42










          • $begingroup$
            @McMath I added something. See now.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:47










          • $begingroup$
            oh, and then you're putting all over common denom? I'll give it a shot
            $endgroup$
            – McMath
            Jan 16 at 14:57










          • $begingroup$
            By the same way: $cos{x}=frac{2sinfrac{x}{2}cos{x}}{2sinfrac{x}{2}}$. With $cos2x$ we make the similar thing.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:58












          • $begingroup$
            Finally - understand. Thanks! Do you just play around with the identities or is there a general strategy that lead you to use that identity in the first place?
            $endgroup$
            – McMath
            Jan 16 at 15:06


















          1












          $begingroup$

          For $sinfrac{x}{2}neq0$ we obtain:
          $$1+cos{x}+cos2x=frac{2sinfrac{x}{2}+2sinfrac{x}{2}cos{x}+2sinfrac{x}{2}cos2x}{2sinfrac{x}{2}}=$$
          $$=frac{2sinfrac{x}{2}+sinfrac{3x}{2}-sinfrac{x}{2}+sinfrac{5x}{2}-sinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{1}{2}+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$
          I used the following formula.
          $$sinalphacosbeta=frac{1}{2}(sin(alpha+beta)+sin(alpha-beta)).$$
          For example,$$2sinfrac{x}{2}cos{x}=2cdotfrac{1}{2}left(sinleft(frac{x}{2}+xright)+sinleft(frac{x}{2}-xright)right)=sinfrac{3x}{2}-sinfrac{x}{2}.$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Can you please explain how you get from step to step. I'm only alloweed to use basic trig IDs. thx
            $endgroup$
            – McMath
            Jan 16 at 14:42










          • $begingroup$
            @McMath I added something. See now.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:47










          • $begingroup$
            oh, and then you're putting all over common denom? I'll give it a shot
            $endgroup$
            – McMath
            Jan 16 at 14:57










          • $begingroup$
            By the same way: $cos{x}=frac{2sinfrac{x}{2}cos{x}}{2sinfrac{x}{2}}$. With $cos2x$ we make the similar thing.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:58












          • $begingroup$
            Finally - understand. Thanks! Do you just play around with the identities or is there a general strategy that lead you to use that identity in the first place?
            $endgroup$
            – McMath
            Jan 16 at 15:06
















          1












          1








          1





          $begingroup$

          For $sinfrac{x}{2}neq0$ we obtain:
          $$1+cos{x}+cos2x=frac{2sinfrac{x}{2}+2sinfrac{x}{2}cos{x}+2sinfrac{x}{2}cos2x}{2sinfrac{x}{2}}=$$
          $$=frac{2sinfrac{x}{2}+sinfrac{3x}{2}-sinfrac{x}{2}+sinfrac{5x}{2}-sinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{1}{2}+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$
          I used the following formula.
          $$sinalphacosbeta=frac{1}{2}(sin(alpha+beta)+sin(alpha-beta)).$$
          For example,$$2sinfrac{x}{2}cos{x}=2cdotfrac{1}{2}left(sinleft(frac{x}{2}+xright)+sinleft(frac{x}{2}-xright)right)=sinfrac{3x}{2}-sinfrac{x}{2}.$$






          share|cite|improve this answer











          $endgroup$



          For $sinfrac{x}{2}neq0$ we obtain:
          $$1+cos{x}+cos2x=frac{2sinfrac{x}{2}+2sinfrac{x}{2}cos{x}+2sinfrac{x}{2}cos2x}{2sinfrac{x}{2}}=$$
          $$=frac{2sinfrac{x}{2}+sinfrac{3x}{2}-sinfrac{x}{2}+sinfrac{5x}{2}-sinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{1}{2}+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$
          I used the following formula.
          $$sinalphacosbeta=frac{1}{2}(sin(alpha+beta)+sin(alpha-beta)).$$
          For example,$$2sinfrac{x}{2}cos{x}=2cdotfrac{1}{2}left(sinleft(frac{x}{2}+xright)+sinleft(frac{x}{2}-xright)right)=sinfrac{3x}{2}-sinfrac{x}{2}.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 16 at 14:46

























          answered Jan 16 at 6:17









          Michael RozenbergMichael Rozenberg

          104k1892197




          104k1892197












          • $begingroup$
            Can you please explain how you get from step to step. I'm only alloweed to use basic trig IDs. thx
            $endgroup$
            – McMath
            Jan 16 at 14:42










          • $begingroup$
            @McMath I added something. See now.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:47










          • $begingroup$
            oh, and then you're putting all over common denom? I'll give it a shot
            $endgroup$
            – McMath
            Jan 16 at 14:57










          • $begingroup$
            By the same way: $cos{x}=frac{2sinfrac{x}{2}cos{x}}{2sinfrac{x}{2}}$. With $cos2x$ we make the similar thing.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:58












          • $begingroup$
            Finally - understand. Thanks! Do you just play around with the identities or is there a general strategy that lead you to use that identity in the first place?
            $endgroup$
            – McMath
            Jan 16 at 15:06




















          • $begingroup$
            Can you please explain how you get from step to step. I'm only alloweed to use basic trig IDs. thx
            $endgroup$
            – McMath
            Jan 16 at 14:42










          • $begingroup$
            @McMath I added something. See now.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:47










          • $begingroup$
            oh, and then you're putting all over common denom? I'll give it a shot
            $endgroup$
            – McMath
            Jan 16 at 14:57










          • $begingroup$
            By the same way: $cos{x}=frac{2sinfrac{x}{2}cos{x}}{2sinfrac{x}{2}}$. With $cos2x$ we make the similar thing.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 14:58












          • $begingroup$
            Finally - understand. Thanks! Do you just play around with the identities or is there a general strategy that lead you to use that identity in the first place?
            $endgroup$
            – McMath
            Jan 16 at 15:06


















          $begingroup$
          Can you please explain how you get from step to step. I'm only alloweed to use basic trig IDs. thx
          $endgroup$
          – McMath
          Jan 16 at 14:42




          $begingroup$
          Can you please explain how you get from step to step. I'm only alloweed to use basic trig IDs. thx
          $endgroup$
          – McMath
          Jan 16 at 14:42












          $begingroup$
          @McMath I added something. See now.
          $endgroup$
          – Michael Rozenberg
          Jan 16 at 14:47




          $begingroup$
          @McMath I added something. See now.
          $endgroup$
          – Michael Rozenberg
          Jan 16 at 14:47












          $begingroup$
          oh, and then you're putting all over common denom? I'll give it a shot
          $endgroup$
          – McMath
          Jan 16 at 14:57




          $begingroup$
          oh, and then you're putting all over common denom? I'll give it a shot
          $endgroup$
          – McMath
          Jan 16 at 14:57












          $begingroup$
          By the same way: $cos{x}=frac{2sinfrac{x}{2}cos{x}}{2sinfrac{x}{2}}$. With $cos2x$ we make the similar thing.
          $endgroup$
          – Michael Rozenberg
          Jan 16 at 14:58






          $begingroup$
          By the same way: $cos{x}=frac{2sinfrac{x}{2}cos{x}}{2sinfrac{x}{2}}$. With $cos2x$ we make the similar thing.
          $endgroup$
          – Michael Rozenberg
          Jan 16 at 14:58














          $begingroup$
          Finally - understand. Thanks! Do you just play around with the identities or is there a general strategy that lead you to use that identity in the first place?
          $endgroup$
          – McMath
          Jan 16 at 15:06






          $begingroup$
          Finally - understand. Thanks! Do you just play around with the identities or is there a general strategy that lead you to use that identity in the first place?
          $endgroup$
          – McMath
          Jan 16 at 15:06













          1












          $begingroup$

          Start with the RHS. Notice that



          $$ sin(5x/2) = sin(2x + x/2) = sin 2x cos (x/2) + cos 2x sin (x/2) $$



          Also, notice that



          $$ sin 2x = 2 sin x cos x = 4 sin (x/2) cos (x/2) cos x $$



          Therefore,



          $$ frac{ sin (5x/2) }{2 sin(x/2) } = frac{4 sin (x/2) cos^2 (x/2) cos x + cos 2x sin (x/2)}{2 sin(x/2)} $$



          $$ = 2 cos^2 (x/2) cos x + frac{ cos 2x }{2} $$



          Also, we have that $cos^2 (x/2) = frac{ cos x + 1 }{2}$ and so



          $$ = cos^2 x + cos x + frac{ cos 2x }{2} $$



          $$ = frac{1+cos 2x }{2} + cos x + frac{ cos 2x }{2} $$



          $$ cos x + cos 2x + frac{1}{2} $$$



          add the missing $1/2$ from the RHS and you have the LHS






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            How did you get that cos^2(x/2) = (cosx + 1)/2
            $endgroup$
            – McMath
            Jan 16 at 4:22










          • $begingroup$
            double angle formula $ x = 2 cdot frac{x}{2} $
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:24












          • $begingroup$
            hmm I don't know that double angle formula, I'm aware of cos(2x) = 2cos^2(x) - 1, but you're missing the 1? If I didn't know your version, can I get there from mine? Also how can you just change the 1/2 into a 1?
            $endgroup$
            – McMath
            Jan 16 at 4:29


















          1












          $begingroup$

          Start with the RHS. Notice that



          $$ sin(5x/2) = sin(2x + x/2) = sin 2x cos (x/2) + cos 2x sin (x/2) $$



          Also, notice that



          $$ sin 2x = 2 sin x cos x = 4 sin (x/2) cos (x/2) cos x $$



          Therefore,



          $$ frac{ sin (5x/2) }{2 sin(x/2) } = frac{4 sin (x/2) cos^2 (x/2) cos x + cos 2x sin (x/2)}{2 sin(x/2)} $$



          $$ = 2 cos^2 (x/2) cos x + frac{ cos 2x }{2} $$



          Also, we have that $cos^2 (x/2) = frac{ cos x + 1 }{2}$ and so



          $$ = cos^2 x + cos x + frac{ cos 2x }{2} $$



          $$ = frac{1+cos 2x }{2} + cos x + frac{ cos 2x }{2} $$



          $$ cos x + cos 2x + frac{1}{2} $$$



          add the missing $1/2$ from the RHS and you have the LHS






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            How did you get that cos^2(x/2) = (cosx + 1)/2
            $endgroup$
            – McMath
            Jan 16 at 4:22










          • $begingroup$
            double angle formula $ x = 2 cdot frac{x}{2} $
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:24












          • $begingroup$
            hmm I don't know that double angle formula, I'm aware of cos(2x) = 2cos^2(x) - 1, but you're missing the 1? If I didn't know your version, can I get there from mine? Also how can you just change the 1/2 into a 1?
            $endgroup$
            – McMath
            Jan 16 at 4:29
















          1












          1








          1





          $begingroup$

          Start with the RHS. Notice that



          $$ sin(5x/2) = sin(2x + x/2) = sin 2x cos (x/2) + cos 2x sin (x/2) $$



          Also, notice that



          $$ sin 2x = 2 sin x cos x = 4 sin (x/2) cos (x/2) cos x $$



          Therefore,



          $$ frac{ sin (5x/2) }{2 sin(x/2) } = frac{4 sin (x/2) cos^2 (x/2) cos x + cos 2x sin (x/2)}{2 sin(x/2)} $$



          $$ = 2 cos^2 (x/2) cos x + frac{ cos 2x }{2} $$



          Also, we have that $cos^2 (x/2) = frac{ cos x + 1 }{2}$ and so



          $$ = cos^2 x + cos x + frac{ cos 2x }{2} $$



          $$ = frac{1+cos 2x }{2} + cos x + frac{ cos 2x }{2} $$



          $$ cos x + cos 2x + frac{1}{2} $$$



          add the missing $1/2$ from the RHS and you have the LHS






          share|cite|improve this answer









          $endgroup$



          Start with the RHS. Notice that



          $$ sin(5x/2) = sin(2x + x/2) = sin 2x cos (x/2) + cos 2x sin (x/2) $$



          Also, notice that



          $$ sin 2x = 2 sin x cos x = 4 sin (x/2) cos (x/2) cos x $$



          Therefore,



          $$ frac{ sin (5x/2) }{2 sin(x/2) } = frac{4 sin (x/2) cos^2 (x/2) cos x + cos 2x sin (x/2)}{2 sin(x/2)} $$



          $$ = 2 cos^2 (x/2) cos x + frac{ cos 2x }{2} $$



          Also, we have that $cos^2 (x/2) = frac{ cos x + 1 }{2}$ and so



          $$ = cos^2 x + cos x + frac{ cos 2x }{2} $$



          $$ = frac{1+cos 2x }{2} + cos x + frac{ cos 2x }{2} $$



          $$ cos x + cos 2x + frac{1}{2} $$$



          add the missing $1/2$ from the RHS and you have the LHS







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 16 at 4:03









          Jimmy SabaterJimmy Sabater

          2,666323




          2,666323












          • $begingroup$
            How did you get that cos^2(x/2) = (cosx + 1)/2
            $endgroup$
            – McMath
            Jan 16 at 4:22










          • $begingroup$
            double angle formula $ x = 2 cdot frac{x}{2} $
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:24












          • $begingroup$
            hmm I don't know that double angle formula, I'm aware of cos(2x) = 2cos^2(x) - 1, but you're missing the 1? If I didn't know your version, can I get there from mine? Also how can you just change the 1/2 into a 1?
            $endgroup$
            – McMath
            Jan 16 at 4:29




















          • $begingroup$
            How did you get that cos^2(x/2) = (cosx + 1)/2
            $endgroup$
            – McMath
            Jan 16 at 4:22










          • $begingroup$
            double angle formula $ x = 2 cdot frac{x}{2} $
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:24












          • $begingroup$
            hmm I don't know that double angle formula, I'm aware of cos(2x) = 2cos^2(x) - 1, but you're missing the 1? If I didn't know your version, can I get there from mine? Also how can you just change the 1/2 into a 1?
            $endgroup$
            – McMath
            Jan 16 at 4:29


















          $begingroup$
          How did you get that cos^2(x/2) = (cosx + 1)/2
          $endgroup$
          – McMath
          Jan 16 at 4:22




          $begingroup$
          How did you get that cos^2(x/2) = (cosx + 1)/2
          $endgroup$
          – McMath
          Jan 16 at 4:22












          $begingroup$
          double angle formula $ x = 2 cdot frac{x}{2} $
          $endgroup$
          – Jimmy Sabater
          Jan 16 at 4:24






          $begingroup$
          double angle formula $ x = 2 cdot frac{x}{2} $
          $endgroup$
          – Jimmy Sabater
          Jan 16 at 4:24














          $begingroup$
          hmm I don't know that double angle formula, I'm aware of cos(2x) = 2cos^2(x) - 1, but you're missing the 1? If I didn't know your version, can I get there from mine? Also how can you just change the 1/2 into a 1?
          $endgroup$
          – McMath
          Jan 16 at 4:29






          $begingroup$
          hmm I don't know that double angle formula, I'm aware of cos(2x) = 2cos^2(x) - 1, but you're missing the 1? If I didn't know your version, can I get there from mine? Also how can you just change the 1/2 into a 1?
          $endgroup$
          – McMath
          Jan 16 at 4:29













          0












          $begingroup$

          Hint:



          Use
          http://mathworld.wolfram.com/WernerFormulas.html



          $2sindfrac x2cos mx=sinleft(m+dfrac12right)x-sinleft(m-dfrac12right)x$



          Set $m=1,2$ and add to find $$2sindfrac x2(cos x+cos2x)=sindfrac{5x}2-sindfrac x2$$



          Assuming $sindfrac x2ne0,$ divide both sides by $2sindfrac x2$



          See also: How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            To be honest, I have no idea how to fit that in... those formulas are listed in my Trig IDs as Product to sum formulas. But it would be more helpful if you give me some step by step guidance.. thx
            $endgroup$
            – McMath
            Jan 16 at 3:57












          • $begingroup$
            McMath: see my answer.
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:04










          • $begingroup$
            @McMath, what if $m=1$ and $m=2?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:16










          • $begingroup$
            if m = 1 I get sin(3x/2) - sin (x/2).... if m =2 I get sin(5x/2) - sin(3x/2) ... but I don't see where this fits in. What are the previous steps???
            $endgroup$
            – McMath
            Jan 16 at 4:38












          • $begingroup$
            @McMath Then $cos x+cos2x=?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:43
















          0












          $begingroup$

          Hint:



          Use
          http://mathworld.wolfram.com/WernerFormulas.html



          $2sindfrac x2cos mx=sinleft(m+dfrac12right)x-sinleft(m-dfrac12right)x$



          Set $m=1,2$ and add to find $$2sindfrac x2(cos x+cos2x)=sindfrac{5x}2-sindfrac x2$$



          Assuming $sindfrac x2ne0,$ divide both sides by $2sindfrac x2$



          See also: How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            To be honest, I have no idea how to fit that in... those formulas are listed in my Trig IDs as Product to sum formulas. But it would be more helpful if you give me some step by step guidance.. thx
            $endgroup$
            – McMath
            Jan 16 at 3:57












          • $begingroup$
            McMath: see my answer.
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:04










          • $begingroup$
            @McMath, what if $m=1$ and $m=2?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:16










          • $begingroup$
            if m = 1 I get sin(3x/2) - sin (x/2).... if m =2 I get sin(5x/2) - sin(3x/2) ... but I don't see where this fits in. What are the previous steps???
            $endgroup$
            – McMath
            Jan 16 at 4:38












          • $begingroup$
            @McMath Then $cos x+cos2x=?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:43














          0












          0








          0





          $begingroup$

          Hint:



          Use
          http://mathworld.wolfram.com/WernerFormulas.html



          $2sindfrac x2cos mx=sinleft(m+dfrac12right)x-sinleft(m-dfrac12right)x$



          Set $m=1,2$ and add to find $$2sindfrac x2(cos x+cos2x)=sindfrac{5x}2-sindfrac x2$$



          Assuming $sindfrac x2ne0,$ divide both sides by $2sindfrac x2$



          See also: How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?






          share|cite|improve this answer











          $endgroup$



          Hint:



          Use
          http://mathworld.wolfram.com/WernerFormulas.html



          $2sindfrac x2cos mx=sinleft(m+dfrac12right)x-sinleft(m-dfrac12right)x$



          Set $m=1,2$ and add to find $$2sindfrac x2(cos x+cos2x)=sindfrac{5x}2-sindfrac x2$$



          Assuming $sindfrac x2ne0,$ divide both sides by $2sindfrac x2$



          See also: How can we sum up $sin$ and $cos$ series when the angles are in arithmetic progression?







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 16 at 5:28

























          answered Jan 16 at 3:48









          lab bhattacharjeelab bhattacharjee

          226k15157275




          226k15157275












          • $begingroup$
            To be honest, I have no idea how to fit that in... those formulas are listed in my Trig IDs as Product to sum formulas. But it would be more helpful if you give me some step by step guidance.. thx
            $endgroup$
            – McMath
            Jan 16 at 3:57












          • $begingroup$
            McMath: see my answer.
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:04










          • $begingroup$
            @McMath, what if $m=1$ and $m=2?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:16










          • $begingroup$
            if m = 1 I get sin(3x/2) - sin (x/2).... if m =2 I get sin(5x/2) - sin(3x/2) ... but I don't see where this fits in. What are the previous steps???
            $endgroup$
            – McMath
            Jan 16 at 4:38












          • $begingroup$
            @McMath Then $cos x+cos2x=?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:43


















          • $begingroup$
            To be honest, I have no idea how to fit that in... those formulas are listed in my Trig IDs as Product to sum formulas. But it would be more helpful if you give me some step by step guidance.. thx
            $endgroup$
            – McMath
            Jan 16 at 3:57












          • $begingroup$
            McMath: see my answer.
            $endgroup$
            – Jimmy Sabater
            Jan 16 at 4:04










          • $begingroup$
            @McMath, what if $m=1$ and $m=2?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:16










          • $begingroup$
            if m = 1 I get sin(3x/2) - sin (x/2).... if m =2 I get sin(5x/2) - sin(3x/2) ... but I don't see where this fits in. What are the previous steps???
            $endgroup$
            – McMath
            Jan 16 at 4:38












          • $begingroup$
            @McMath Then $cos x+cos2x=?$
            $endgroup$
            – lab bhattacharjee
            Jan 16 at 4:43
















          $begingroup$
          To be honest, I have no idea how to fit that in... those formulas are listed in my Trig IDs as Product to sum formulas. But it would be more helpful if you give me some step by step guidance.. thx
          $endgroup$
          – McMath
          Jan 16 at 3:57






          $begingroup$
          To be honest, I have no idea how to fit that in... those formulas are listed in my Trig IDs as Product to sum formulas. But it would be more helpful if you give me some step by step guidance.. thx
          $endgroup$
          – McMath
          Jan 16 at 3:57














          $begingroup$
          McMath: see my answer.
          $endgroup$
          – Jimmy Sabater
          Jan 16 at 4:04




          $begingroup$
          McMath: see my answer.
          $endgroup$
          – Jimmy Sabater
          Jan 16 at 4:04












          $begingroup$
          @McMath, what if $m=1$ and $m=2?$
          $endgroup$
          – lab bhattacharjee
          Jan 16 at 4:16




          $begingroup$
          @McMath, what if $m=1$ and $m=2?$
          $endgroup$
          – lab bhattacharjee
          Jan 16 at 4:16












          $begingroup$
          if m = 1 I get sin(3x/2) - sin (x/2).... if m =2 I get sin(5x/2) - sin(3x/2) ... but I don't see where this fits in. What are the previous steps???
          $endgroup$
          – McMath
          Jan 16 at 4:38






          $begingroup$
          if m = 1 I get sin(3x/2) - sin (x/2).... if m =2 I get sin(5x/2) - sin(3x/2) ... but I don't see where this fits in. What are the previous steps???
          $endgroup$
          – McMath
          Jan 16 at 4:38














          $begingroup$
          @McMath Then $cos x+cos2x=?$
          $endgroup$
          – lab bhattacharjee
          Jan 16 at 4:43




          $begingroup$
          @McMath Then $cos x+cos2x=?$
          $endgroup$
          – lab bhattacharjee
          Jan 16 at 4:43











          0












          $begingroup$

          The left-hand side is $$Re(1+e^{ix}+e^{2ix})=Refrac{e^{3ix}-1}{e^{ix}-1}=Refrac{2ie^{3ix/2}sinfrac{3x}{2}}{2ie^{ix/2}sinfrac{x}{2}}=Refrac{2e^{ix}sinfrac{3x}{2}}{2sinfrac{x}{2}}\=frac{2cos xsinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{sinfrac{x}{2}+sinfrac{5x}{2}}{2sinfrac{x}{2}}=frac12+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I've never seen this math formulas. Please explain using only basic trig identities.
            $endgroup$
            – McMath
            Jan 16 at 14:43
















          0












          $begingroup$

          The left-hand side is $$Re(1+e^{ix}+e^{2ix})=Refrac{e^{3ix}-1}{e^{ix}-1}=Refrac{2ie^{3ix/2}sinfrac{3x}{2}}{2ie^{ix/2}sinfrac{x}{2}}=Refrac{2e^{ix}sinfrac{3x}{2}}{2sinfrac{x}{2}}\=frac{2cos xsinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{sinfrac{x}{2}+sinfrac{5x}{2}}{2sinfrac{x}{2}}=frac12+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            I've never seen this math formulas. Please explain using only basic trig identities.
            $endgroup$
            – McMath
            Jan 16 at 14:43














          0












          0








          0





          $begingroup$

          The left-hand side is $$Re(1+e^{ix}+e^{2ix})=Refrac{e^{3ix}-1}{e^{ix}-1}=Refrac{2ie^{3ix/2}sinfrac{3x}{2}}{2ie^{ix/2}sinfrac{x}{2}}=Refrac{2e^{ix}sinfrac{3x}{2}}{2sinfrac{x}{2}}\=frac{2cos xsinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{sinfrac{x}{2}+sinfrac{5x}{2}}{2sinfrac{x}{2}}=frac12+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$






          share|cite|improve this answer









          $endgroup$



          The left-hand side is $$Re(1+e^{ix}+e^{2ix})=Refrac{e^{3ix}-1}{e^{ix}-1}=Refrac{2ie^{3ix/2}sinfrac{3x}{2}}{2ie^{ix/2}sinfrac{x}{2}}=Refrac{2e^{ix}sinfrac{3x}{2}}{2sinfrac{x}{2}}\=frac{2cos xsinfrac{3x}{2}}{2sinfrac{x}{2}}=frac{sinfrac{x}{2}+sinfrac{5x}{2}}{2sinfrac{x}{2}}=frac12+frac{sinfrac{5x}{2}}{2sinfrac{x}{2}}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 16 at 6:29









          J.G.J.G.

          27.5k22843




          27.5k22843












          • $begingroup$
            I've never seen this math formulas. Please explain using only basic trig identities.
            $endgroup$
            – McMath
            Jan 16 at 14:43


















          • $begingroup$
            I've never seen this math formulas. Please explain using only basic trig identities.
            $endgroup$
            – McMath
            Jan 16 at 14:43
















          $begingroup$
          I've never seen this math formulas. Please explain using only basic trig identities.
          $endgroup$
          – McMath
          Jan 16 at 14:43




          $begingroup$
          I've never seen this math formulas. Please explain using only basic trig identities.
          $endgroup$
          – McMath
          Jan 16 at 14:43


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075275%2fprecalc-trig-identity-verify-1-cosx-cos2x-frac-12-frac-sin5%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]