show that $sum_{n geq 0}n mu(|f| > n) < +infty implies f in L^1$
$begingroup$
the series being convergent we have $lim_{n to infty }n mu(|f| > n) = 0$
because $ n to infty $ then $mu(|f| > n)$ must tend to $0$ with an atleast $O(n^{1+epsilon})$ speed , right ?
so $mu(|f| > +infty) = 0$ and therefore $f in L^1$
is my work correct ?
integration measure-theory
$endgroup$
add a comment |
$begingroup$
the series being convergent we have $lim_{n to infty }n mu(|f| > n) = 0$
because $ n to infty $ then $mu(|f| > n)$ must tend to $0$ with an atleast $O(n^{1+epsilon})$ speed , right ?
so $mu(|f| > +infty) = 0$ and therefore $f in L^1$
is my work correct ?
integration measure-theory
$endgroup$
1
$begingroup$
there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
$endgroup$
– Rhys Steele
Jan 9 at 19:01
$begingroup$
@RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
$endgroup$
– rapidracim
Jan 9 at 19:11
1
$begingroup$
nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
$endgroup$
– mathworker21
Jan 9 at 19:17
1
$begingroup$
Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
$endgroup$
– Keen-ameteur
Jan 9 at 20:19
add a comment |
$begingroup$
the series being convergent we have $lim_{n to infty }n mu(|f| > n) = 0$
because $ n to infty $ then $mu(|f| > n)$ must tend to $0$ with an atleast $O(n^{1+epsilon})$ speed , right ?
so $mu(|f| > +infty) = 0$ and therefore $f in L^1$
is my work correct ?
integration measure-theory
$endgroup$
the series being convergent we have $lim_{n to infty }n mu(|f| > n) = 0$
because $ n to infty $ then $mu(|f| > n)$ must tend to $0$ with an atleast $O(n^{1+epsilon})$ speed , right ?
so $mu(|f| > +infty) = 0$ and therefore $f in L^1$
is my work correct ?
integration measure-theory
integration measure-theory
asked Jan 9 at 18:50


rapidracimrapidracim
1,6881319
1,6881319
1
$begingroup$
there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
$endgroup$
– Rhys Steele
Jan 9 at 19:01
$begingroup$
@RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
$endgroup$
– rapidracim
Jan 9 at 19:11
1
$begingroup$
nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
$endgroup$
– mathworker21
Jan 9 at 19:17
1
$begingroup$
Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
$endgroup$
– Keen-ameteur
Jan 9 at 20:19
add a comment |
1
$begingroup$
there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
$endgroup$
– Rhys Steele
Jan 9 at 19:01
$begingroup$
@RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
$endgroup$
– rapidracim
Jan 9 at 19:11
1
$begingroup$
nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
$endgroup$
– mathworker21
Jan 9 at 19:17
1
$begingroup$
Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
$endgroup$
– Keen-ameteur
Jan 9 at 20:19
1
1
$begingroup$
there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
$endgroup$
– Rhys Steele
Jan 9 at 19:01
$begingroup$
there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
$endgroup$
– Rhys Steele
Jan 9 at 19:01
$begingroup$
@RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
$endgroup$
– rapidracim
Jan 9 at 19:11
$begingroup$
@RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
$endgroup$
– rapidracim
Jan 9 at 19:11
1
1
$begingroup$
nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
$endgroup$
– mathworker21
Jan 9 at 19:17
$begingroup$
nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
$endgroup$
– mathworker21
Jan 9 at 19:17
1
1
$begingroup$
Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
$endgroup$
– Keen-ameteur
Jan 9 at 20:19
$begingroup$
Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
$endgroup$
– Keen-ameteur
Jan 9 at 20:19
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You need the hypothesis that $mu({|f| > 0}) < +infty$.
Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
$$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$
This also implies that
$$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$
Thus,
$$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$
and $f in L^1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067820%2fshow-that-sum-n-geq-0n-muf-n-infty-implies-f-in-l1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You need the hypothesis that $mu({|f| > 0}) < +infty$.
Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
$$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$
This also implies that
$$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$
Thus,
$$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$
and $f in L^1$.
$endgroup$
add a comment |
$begingroup$
You need the hypothesis that $mu({|f| > 0}) < +infty$.
Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
$$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$
This also implies that
$$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$
Thus,
$$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$
and $f in L^1$.
$endgroup$
add a comment |
$begingroup$
You need the hypothesis that $mu({|f| > 0}) < +infty$.
Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
$$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$
This also implies that
$$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$
Thus,
$$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$
and $f in L^1$.
$endgroup$
You need the hypothesis that $mu({|f| > 0}) < +infty$.
Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
$$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$
This also implies that
$$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$
Thus,
$$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$
and $f in L^1$.
edited Jan 21 at 0:41
answered Jan 21 at 0:26
RRLRRL
50.7k42573
50.7k42573
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067820%2fshow-that-sum-n-geq-0n-muf-n-infty-implies-f-in-l1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
$endgroup$
– Rhys Steele
Jan 9 at 19:01
$begingroup$
@RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
$endgroup$
– rapidracim
Jan 9 at 19:11
1
$begingroup$
nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
$endgroup$
– mathworker21
Jan 9 at 19:17
1
$begingroup$
Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
$endgroup$
– Keen-ameteur
Jan 9 at 20:19