show that $sum_{n geq 0}n mu(|f| > n) < +infty implies f in L^1$












0












$begingroup$


the series being convergent we have $lim_{n to infty }n mu(|f| > n) = 0$



because $ n to infty $ then $mu(|f| > n)$ must tend to $0$ with an atleast $O(n^{1+epsilon})$ speed , right ?



so $mu(|f| > +infty) = 0$ and therefore $f in L^1$



is my work correct ?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
    $endgroup$
    – Rhys Steele
    Jan 9 at 19:01












  • $begingroup$
    @RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
    $endgroup$
    – rapidracim
    Jan 9 at 19:11






  • 1




    $begingroup$
    nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
    $endgroup$
    – mathworker21
    Jan 9 at 19:17








  • 1




    $begingroup$
    Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
    $endgroup$
    – Keen-ameteur
    Jan 9 at 20:19
















0












$begingroup$


the series being convergent we have $lim_{n to infty }n mu(|f| > n) = 0$



because $ n to infty $ then $mu(|f| > n)$ must tend to $0$ with an atleast $O(n^{1+epsilon})$ speed , right ?



so $mu(|f| > +infty) = 0$ and therefore $f in L^1$



is my work correct ?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
    $endgroup$
    – Rhys Steele
    Jan 9 at 19:01












  • $begingroup$
    @RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
    $endgroup$
    – rapidracim
    Jan 9 at 19:11






  • 1




    $begingroup$
    nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
    $endgroup$
    – mathworker21
    Jan 9 at 19:17








  • 1




    $begingroup$
    Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
    $endgroup$
    – Keen-ameteur
    Jan 9 at 20:19














0












0








0





$begingroup$


the series being convergent we have $lim_{n to infty }n mu(|f| > n) = 0$



because $ n to infty $ then $mu(|f| > n)$ must tend to $0$ with an atleast $O(n^{1+epsilon})$ speed , right ?



so $mu(|f| > +infty) = 0$ and therefore $f in L^1$



is my work correct ?










share|cite|improve this question









$endgroup$




the series being convergent we have $lim_{n to infty }n mu(|f| > n) = 0$



because $ n to infty $ then $mu(|f| > n)$ must tend to $0$ with an atleast $O(n^{1+epsilon})$ speed , right ?



so $mu(|f| > +infty) = 0$ and therefore $f in L^1$



is my work correct ?







integration measure-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 9 at 18:50









rapidracimrapidracim

1,6881319




1,6881319








  • 1




    $begingroup$
    there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
    $endgroup$
    – Rhys Steele
    Jan 9 at 19:01












  • $begingroup$
    @RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
    $endgroup$
    – rapidracim
    Jan 9 at 19:11






  • 1




    $begingroup$
    nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
    $endgroup$
    – mathworker21
    Jan 9 at 19:17








  • 1




    $begingroup$
    Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
    $endgroup$
    – Keen-ameteur
    Jan 9 at 20:19














  • 1




    $begingroup$
    there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
    $endgroup$
    – Rhys Steele
    Jan 9 at 19:01












  • $begingroup$
    @RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
    $endgroup$
    – rapidracim
    Jan 9 at 19:11






  • 1




    $begingroup$
    nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
    $endgroup$
    – mathworker21
    Jan 9 at 19:17








  • 1




    $begingroup$
    Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
    $endgroup$
    – Keen-ameteur
    Jan 9 at 20:19








1




1




$begingroup$
there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
$endgroup$
– Rhys Steele
Jan 9 at 19:01






$begingroup$
there are measure spaces with measure $mu$ and functions $f$ such that $mu(|f| = infty) = 0$ but $f not in L^1$ (e.g. $frac1x$ on $(0,infty)$ with the lebesgue measure). You need to do more than show that $mu(|f| = infty) = 0$.
$endgroup$
– Rhys Steele
Jan 9 at 19:01














$begingroup$
@RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
$endgroup$
– rapidracim
Jan 9 at 19:11




$begingroup$
@RhysSteele what if i write $X = cup_{n geq 0} A_n = cup_{n geq 0} {|f| > n} $ then $int|f|dmu leq sum_{n geq 0} int_{A_n}|f|dmu $ can this lead me somewhere ?
$endgroup$
– rapidracim
Jan 9 at 19:11




1




1




$begingroup$
nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
$endgroup$
– mathworker21
Jan 9 at 19:17






$begingroup$
nearly all of your work is wrong. in addition to what Rhys said, $mu(|f| > n)$ can be like $frac{1}{nlog^2 n}$
$endgroup$
– mathworker21
Jan 9 at 19:17






1




1




$begingroup$
Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
$endgroup$
– Keen-ameteur
Jan 9 at 20:19




$begingroup$
Is $mu$ finite? Because one can have $mu(X)=infty$ and $fequiv frac{1}{2}$, and this will not be true.
$endgroup$
– Keen-ameteur
Jan 9 at 20:19










1 Answer
1






active

oldest

votes


















1












$begingroup$

You need the hypothesis that $mu({|f| > 0}) < +infty$.



Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
$$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$



This also implies that



$$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$



Thus,



$$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$



and $f in L^1$.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067820%2fshow-that-sum-n-geq-0n-muf-n-infty-implies-f-in-l1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    You need the hypothesis that $mu({|f| > 0}) < +infty$.



    Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
    $$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$



    This also implies that



    $$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$



    Thus,



    $$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$



    and $f in L^1$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      You need the hypothesis that $mu({|f| > 0}) < +infty$.



      Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
      $$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$



      This also implies that



      $$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$



      Thus,



      $$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$



      and $f in L^1$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        You need the hypothesis that $mu({|f| > 0}) < +infty$.



        Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
        $$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$



        This also implies that



        $$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$



        Thus,



        $$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$



        and $f in L^1$.






        share|cite|improve this answer











        $endgroup$



        You need the hypothesis that $mu({|f| > 0}) < +infty$.



        Let $E_n = { n < |f| leqslant n+1} $ and $F_n = { |f| > n}$. Since $E_n subset F_n$ we have $mu(E_n) leqslant mu(F_n)$ and since $sum_{n geqslant 0}nmu(F_n) < +infty$, by the comparison test it follows that
        $$sum_{n geqslant 0}mu(E_n),,, sum_{n geqslant 0}nmu(E_n) < +infty$$



        This also implies that



        $$sum_{n geqslant 0}(n+1)mu(E_n) < +infty$$



        Thus,



        $$int|f|,dmu = sum_{n geqslant 0} int_{E_n}|f|, dmu leqslant sum_{n geqslant 0} int_{E_n}(n+1) , dmu = sum_{n geqslant 0} (n+1)mu(E_n) < +infty, $$



        and $f in L^1$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 21 at 0:41

























        answered Jan 21 at 0:26









        RRLRRL

        50.7k42573




        50.7k42573






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067820%2fshow-that-sum-n-geq-0n-muf-n-infty-implies-f-in-l1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter