Sum of binomial coefficients, with alternate signs, congruent two or zero modulo four
$begingroup$
I've come across the following formula:
$$
S(n) ;:=
sum
_{
begin{array}{c}
k=0 \
k equiv_4 0,; 2
end{array}
}
^{
n
}
2 cdot
binom{n}{k}cdot
(-1)^{k over 2} $$
where the summation run over the values of $k$ in $[0, n]$ that are congruent modulo 4 to 0 or 2.
Can this be simplified?
I've numerically verified that the sum takes the following values:
$$
S(n) =
begin{cases}
(-1)^{n over 4} cdot 2^{{nover 2} + 1}, & text{if $n equiv_4 0 $} \
S(n-1) , & text{if $n equiv_4 1 $} \
0, & text{if $n equiv_4 2 $} \
(-1)^{n +1 over 4} cdot 2^{n+1over2}, & text{if $n equiv_4 3 $} \
end{cases}
$$
but except for the case $n equiv_4 2 $ I can see why this is the case.
Particularly interesting, to me, are the fact that this sum is either 0 or a power of two and the case $n equiv_4 1 $ where the two partial sums of the binomial coefficients in adjacent rows total the same (e.g. $ 2 cdot 1 - 2 cdot 6 + 2 cdot 1 = 2 cdot 1 - 2 cdot 10 + 2 cdot 5$ for the 5th and 6th row of the Pascal's triangle).
summation proof-writing binomial-coefficients
$endgroup$
add a comment |
$begingroup$
I've come across the following formula:
$$
S(n) ;:=
sum
_{
begin{array}{c}
k=0 \
k equiv_4 0,; 2
end{array}
}
^{
n
}
2 cdot
binom{n}{k}cdot
(-1)^{k over 2} $$
where the summation run over the values of $k$ in $[0, n]$ that are congruent modulo 4 to 0 or 2.
Can this be simplified?
I've numerically verified that the sum takes the following values:
$$
S(n) =
begin{cases}
(-1)^{n over 4} cdot 2^{{nover 2} + 1}, & text{if $n equiv_4 0 $} \
S(n-1) , & text{if $n equiv_4 1 $} \
0, & text{if $n equiv_4 2 $} \
(-1)^{n +1 over 4} cdot 2^{n+1over2}, & text{if $n equiv_4 3 $} \
end{cases}
$$
but except for the case $n equiv_4 2 $ I can see why this is the case.
Particularly interesting, to me, are the fact that this sum is either 0 or a power of two and the case $n equiv_4 1 $ where the two partial sums of the binomial coefficients in adjacent rows total the same (e.g. $ 2 cdot 1 - 2 cdot 6 + 2 cdot 1 = 2 cdot 1 - 2 cdot 10 + 2 cdot 5$ for the 5th and 6th row of the Pascal's triangle).
summation proof-writing binomial-coefficients
$endgroup$
2
$begingroup$
Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
$endgroup$
– Ethan Bolker
Jan 9 at 17:42
add a comment |
$begingroup$
I've come across the following formula:
$$
S(n) ;:=
sum
_{
begin{array}{c}
k=0 \
k equiv_4 0,; 2
end{array}
}
^{
n
}
2 cdot
binom{n}{k}cdot
(-1)^{k over 2} $$
where the summation run over the values of $k$ in $[0, n]$ that are congruent modulo 4 to 0 or 2.
Can this be simplified?
I've numerically verified that the sum takes the following values:
$$
S(n) =
begin{cases}
(-1)^{n over 4} cdot 2^{{nover 2} + 1}, & text{if $n equiv_4 0 $} \
S(n-1) , & text{if $n equiv_4 1 $} \
0, & text{if $n equiv_4 2 $} \
(-1)^{n +1 over 4} cdot 2^{n+1over2}, & text{if $n equiv_4 3 $} \
end{cases}
$$
but except for the case $n equiv_4 2 $ I can see why this is the case.
Particularly interesting, to me, are the fact that this sum is either 0 or a power of two and the case $n equiv_4 1 $ where the two partial sums of the binomial coefficients in adjacent rows total the same (e.g. $ 2 cdot 1 - 2 cdot 6 + 2 cdot 1 = 2 cdot 1 - 2 cdot 10 + 2 cdot 5$ for the 5th and 6th row of the Pascal's triangle).
summation proof-writing binomial-coefficients
$endgroup$
I've come across the following formula:
$$
S(n) ;:=
sum
_{
begin{array}{c}
k=0 \
k equiv_4 0,; 2
end{array}
}
^{
n
}
2 cdot
binom{n}{k}cdot
(-1)^{k over 2} $$
where the summation run over the values of $k$ in $[0, n]$ that are congruent modulo 4 to 0 or 2.
Can this be simplified?
I've numerically verified that the sum takes the following values:
$$
S(n) =
begin{cases}
(-1)^{n over 4} cdot 2^{{nover 2} + 1}, & text{if $n equiv_4 0 $} \
S(n-1) , & text{if $n equiv_4 1 $} \
0, & text{if $n equiv_4 2 $} \
(-1)^{n +1 over 4} cdot 2^{n+1over2}, & text{if $n equiv_4 3 $} \
end{cases}
$$
but except for the case $n equiv_4 2 $ I can see why this is the case.
Particularly interesting, to me, are the fact that this sum is either 0 or a power of two and the case $n equiv_4 1 $ where the two partial sums of the binomial coefficients in adjacent rows total the same (e.g. $ 2 cdot 1 - 2 cdot 6 + 2 cdot 1 = 2 cdot 1 - 2 cdot 10 + 2 cdot 5$ for the 5th and 6th row of the Pascal's triangle).
summation proof-writing binomial-coefficients
summation proof-writing binomial-coefficients
asked Jan 9 at 17:34


Margaret BloomMargaret Bloom
1183
1183
2
$begingroup$
Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
$endgroup$
– Ethan Bolker
Jan 9 at 17:42
add a comment |
2
$begingroup$
Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
$endgroup$
– Ethan Bolker
Jan 9 at 17:42
2
2
$begingroup$
Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
$endgroup$
– Ethan Bolker
Jan 9 at 17:42
$begingroup$
Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
$endgroup$
– Ethan Bolker
Jan 9 at 17:42
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$
Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.
Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$
This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067748%2fsum-of-binomial-coefficients-with-alternate-signs-congruent-two-or-zero-modulo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$
Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.
Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$
This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$
$endgroup$
add a comment |
$begingroup$
$$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$
Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.
Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$
This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$
$endgroup$
add a comment |
$begingroup$
$$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$
Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.
Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$
This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$
$endgroup$
$$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$
Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.
Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$
This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$
answered Jan 9 at 18:49


Shubham JohriShubham Johri
5,082717
5,082717
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067748%2fsum-of-binomial-coefficients-with-alternate-signs-congruent-two-or-zero-modulo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
$endgroup$
– Ethan Bolker
Jan 9 at 17:42