Sum of binomial coefficients, with alternate signs, congruent two or zero modulo four












3












$begingroup$


I've come across the following formula:



$$
S(n) ;:=
sum
_{
begin{array}{c}
k=0 \
k equiv_4 0,; 2
end{array}
}
^{
n
}
2 cdot
binom{n}{k}cdot
(-1)^{k over 2} $$



where the summation run over the values of $k$ in $[0, n]$ that are congruent modulo 4 to 0 or 2.



Can this be simplified?





I've numerically verified that the sum takes the following values:
$$
S(n) =
begin{cases}
(-1)^{n over 4} cdot 2^{{nover 2} + 1}, & text{if $n equiv_4 0 $} \
S(n-1) , & text{if $n equiv_4 1 $} \
0, & text{if $n equiv_4 2 $} \
(-1)^{n +1 over 4} cdot 2^{n+1over2}, & text{if $n equiv_4 3 $} \
end{cases}
$$



but except for the case $n equiv_4 2 $ I can see why this is the case.



Particularly interesting, to me, are the fact that this sum is either 0 or a power of two and the case $n equiv_4 1 $ where the two partial sums of the binomial coefficients in adjacent rows total the same (e.g. $ 2 cdot 1 - 2 cdot 6 + 2 cdot 1 = 2 cdot 1 - 2 cdot 10 + 2 cdot 5$ for the 5th and 6th row of the Pascal's triangle).










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
    $endgroup$
    – Ethan Bolker
    Jan 9 at 17:42


















3












$begingroup$


I've come across the following formula:



$$
S(n) ;:=
sum
_{
begin{array}{c}
k=0 \
k equiv_4 0,; 2
end{array}
}
^{
n
}
2 cdot
binom{n}{k}cdot
(-1)^{k over 2} $$



where the summation run over the values of $k$ in $[0, n]$ that are congruent modulo 4 to 0 or 2.



Can this be simplified?





I've numerically verified that the sum takes the following values:
$$
S(n) =
begin{cases}
(-1)^{n over 4} cdot 2^{{nover 2} + 1}, & text{if $n equiv_4 0 $} \
S(n-1) , & text{if $n equiv_4 1 $} \
0, & text{if $n equiv_4 2 $} \
(-1)^{n +1 over 4} cdot 2^{n+1over2}, & text{if $n equiv_4 3 $} \
end{cases}
$$



but except for the case $n equiv_4 2 $ I can see why this is the case.



Particularly interesting, to me, are the fact that this sum is either 0 or a power of two and the case $n equiv_4 1 $ where the two partial sums of the binomial coefficients in adjacent rows total the same (e.g. $ 2 cdot 1 - 2 cdot 6 + 2 cdot 1 = 2 cdot 1 - 2 cdot 10 + 2 cdot 5$ for the 5th and 6th row of the Pascal's triangle).










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
    $endgroup$
    – Ethan Bolker
    Jan 9 at 17:42
















3












3








3





$begingroup$


I've come across the following formula:



$$
S(n) ;:=
sum
_{
begin{array}{c}
k=0 \
k equiv_4 0,; 2
end{array}
}
^{
n
}
2 cdot
binom{n}{k}cdot
(-1)^{k over 2} $$



where the summation run over the values of $k$ in $[0, n]$ that are congruent modulo 4 to 0 or 2.



Can this be simplified?





I've numerically verified that the sum takes the following values:
$$
S(n) =
begin{cases}
(-1)^{n over 4} cdot 2^{{nover 2} + 1}, & text{if $n equiv_4 0 $} \
S(n-1) , & text{if $n equiv_4 1 $} \
0, & text{if $n equiv_4 2 $} \
(-1)^{n +1 over 4} cdot 2^{n+1over2}, & text{if $n equiv_4 3 $} \
end{cases}
$$



but except for the case $n equiv_4 2 $ I can see why this is the case.



Particularly interesting, to me, are the fact that this sum is either 0 or a power of two and the case $n equiv_4 1 $ where the two partial sums of the binomial coefficients in adjacent rows total the same (e.g. $ 2 cdot 1 - 2 cdot 6 + 2 cdot 1 = 2 cdot 1 - 2 cdot 10 + 2 cdot 5$ for the 5th and 6th row of the Pascal's triangle).










share|cite|improve this question









$endgroup$




I've come across the following formula:



$$
S(n) ;:=
sum
_{
begin{array}{c}
k=0 \
k equiv_4 0,; 2
end{array}
}
^{
n
}
2 cdot
binom{n}{k}cdot
(-1)^{k over 2} $$



where the summation run over the values of $k$ in $[0, n]$ that are congruent modulo 4 to 0 or 2.



Can this be simplified?





I've numerically verified that the sum takes the following values:
$$
S(n) =
begin{cases}
(-1)^{n over 4} cdot 2^{{nover 2} + 1}, & text{if $n equiv_4 0 $} \
S(n-1) , & text{if $n equiv_4 1 $} \
0, & text{if $n equiv_4 2 $} \
(-1)^{n +1 over 4} cdot 2^{n+1over2}, & text{if $n equiv_4 3 $} \
end{cases}
$$



but except for the case $n equiv_4 2 $ I can see why this is the case.



Particularly interesting, to me, are the fact that this sum is either 0 or a power of two and the case $n equiv_4 1 $ where the two partial sums of the binomial coefficients in adjacent rows total the same (e.g. $ 2 cdot 1 - 2 cdot 6 + 2 cdot 1 = 2 cdot 1 - 2 cdot 10 + 2 cdot 5$ for the 5th and 6th row of the Pascal's triangle).







summation proof-writing binomial-coefficients






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 9 at 17:34









Margaret BloomMargaret Bloom

1183




1183








  • 2




    $begingroup$
    Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
    $endgroup$
    – Ethan Bolker
    Jan 9 at 17:42
















  • 2




    $begingroup$
    Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
    $endgroup$
    – Ethan Bolker
    Jan 9 at 17:42










2




2




$begingroup$
Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
$endgroup$
– Ethan Bolker
Jan 9 at 17:42






$begingroup$
Two possible simplifications. The sum is over all even $k$; no need to think mod $4$ about the index. You can factor $2$ from the sum.
$endgroup$
– Ethan Bolker
Jan 9 at 17:42












1 Answer
1






active

oldest

votes


















1












$begingroup$

$$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$



Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.



Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$



This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067748%2fsum-of-binomial-coefficients-with-alternate-signs-congruent-two-or-zero-modulo%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    $$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$



    Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.



    Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$



    This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      $$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$



      Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.



      Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$



      This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        $$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$



        Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.



        Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$



        This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$






        share|cite|improve this answer









        $endgroup$



        $$S(n)=2sum_{kequiv_40,2}^n(-1)^{k/2}binom nk=2Big(binom n0-binom n2+binom n4...Big)$$



        Consider $(1+x)^n=binom n0+binom n1x+binom n2x^2+...+binom nnx^n$.



        Substitute $x=i$ to get$$(1+i)^n=binom n0+binom n1i-binom n2-binom n3i+binom n4...$$



        This gives$$mathfrak R((1+i)^n)=frac{S(n)}2\therefore S(n)=2mathfrak R(2^{n/2}e^{inpi/4})=2^{n/2+1}cos(npi/4)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 9 at 18:49









        Shubham JohriShubham Johri

        5,082717




        5,082717






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067748%2fsum-of-binomial-coefficients-with-alternate-signs-congruent-two-or-zero-modulo%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            Npm cannot find a required file even through it is in the searched directory

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith