What is the joint CDF of $f(x,y)=2(x+y), 0leq xleq yleq 1$












0












$begingroup$


I am trying to find the joint CDF of $f(x,y)=2(x+y) : 0leq xleq yleq 1$.



There are five different answers for the CDF depending on the restrictions of $x$ and $y$ that you use. I



found the CDF $F(x,y)=y^2x+x^2y-x^3mbox{ if }0leq xleq yleq 1$ and also I found the CDF $F(x,y)=0mbox{ if }x<0 land y<0$.



Now I need to find the CDF if $x>y$ and $0>y>1$ and then if $y>1$ and $0<x<1$. and for $y>1$ and $x>1$. I know how to do the integral and everything I am just unsure of what my bounds for each of these three integrals where we use double integrals would be.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I am trying to find the joint CDF of $f(x,y)=2(x+y) : 0leq xleq yleq 1$.



    There are five different answers for the CDF depending on the restrictions of $x$ and $y$ that you use. I



    found the CDF $F(x,y)=y^2x+x^2y-x^3mbox{ if }0leq xleq yleq 1$ and also I found the CDF $F(x,y)=0mbox{ if }x<0 land y<0$.



    Now I need to find the CDF if $x>y$ and $0>y>1$ and then if $y>1$ and $0<x<1$. and for $y>1$ and $x>1$. I know how to do the integral and everything I am just unsure of what my bounds for each of these three integrals where we use double integrals would be.










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      1



      $begingroup$


      I am trying to find the joint CDF of $f(x,y)=2(x+y) : 0leq xleq yleq 1$.



      There are five different answers for the CDF depending on the restrictions of $x$ and $y$ that you use. I



      found the CDF $F(x,y)=y^2x+x^2y-x^3mbox{ if }0leq xleq yleq 1$ and also I found the CDF $F(x,y)=0mbox{ if }x<0 land y<0$.



      Now I need to find the CDF if $x>y$ and $0>y>1$ and then if $y>1$ and $0<x<1$. and for $y>1$ and $x>1$. I know how to do the integral and everything I am just unsure of what my bounds for each of these three integrals where we use double integrals would be.










      share|cite|improve this question











      $endgroup$




      I am trying to find the joint CDF of $f(x,y)=2(x+y) : 0leq xleq yleq 1$.



      There are five different answers for the CDF depending on the restrictions of $x$ and $y$ that you use. I



      found the CDF $F(x,y)=y^2x+x^2y-x^3mbox{ if }0leq xleq yleq 1$ and also I found the CDF $F(x,y)=0mbox{ if }x<0 land y<0$.



      Now I need to find the CDF if $x>y$ and $0>y>1$ and then if $y>1$ and $0<x<1$. and for $y>1$ and $x>1$. I know how to do the integral and everything I am just unsure of what my bounds for each of these three integrals where we use double integrals would be.







      probability integration probability-distributions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 13 at 9:42









      rtybase

      11k21533




      11k21533










      asked Nov 7 '14 at 5:41









      juniormathjuniormath

      155215




      155215






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          It looks like :



          $$begin{align}F(x,y) ~&=~ begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
          int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
          int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
          \[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
          \[4pt] y^3 & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          end{align}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:43










          • $begingroup$
            same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:53












          • $begingroup$
            @Graham Kemp What do you mean by min(x,t)?
            $endgroup$
            – AmaC
            Mar 24 '17 at 13:34










          • $begingroup$
            The minimum of $x$ and $t$.
            $endgroup$
            – Graham Kemp
            Mar 24 '17 at 13:42











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1010170%2fwhat-is-the-joint-cdf-of-fx-y-2xy-0-leq-x-leq-y-leq-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          It looks like :



          $$begin{align}F(x,y) ~&=~ begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
          int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
          int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
          \[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
          \[4pt] y^3 & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          end{align}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:43










          • $begingroup$
            same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:53












          • $begingroup$
            @Graham Kemp What do you mean by min(x,t)?
            $endgroup$
            – AmaC
            Mar 24 '17 at 13:34










          • $begingroup$
            The minimum of $x$ and $t$.
            $endgroup$
            – Graham Kemp
            Mar 24 '17 at 13:42
















          0












          $begingroup$

          It looks like :



          $$begin{align}F(x,y) ~&=~ begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
          int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
          int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
          \[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
          \[4pt] y^3 & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          end{align}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:43










          • $begingroup$
            same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:53












          • $begingroup$
            @Graham Kemp What do you mean by min(x,t)?
            $endgroup$
            – AmaC
            Mar 24 '17 at 13:34










          • $begingroup$
            The minimum of $x$ and $t$.
            $endgroup$
            – Graham Kemp
            Mar 24 '17 at 13:42














          0












          0








          0





          $begingroup$

          It looks like :



          $$begin{align}F(x,y) ~&=~ begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
          int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
          int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
          \[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
          \[4pt] y^3 & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          end{align}$$






          share|cite|improve this answer











          $endgroup$



          It looks like :



          $$begin{align}F(x,y) ~&=~ begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
          int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
          \[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
          int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
          \[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          \[2ex] &=~begin{cases}
          0 & : x<0 lor y< 0
          \[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
          \[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
          \[4pt] y^3 & : 0leq yleq 1, x> y
          \[4pt] 1 & : x> 1 land y>1
          end{cases}
          end{align}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Mar 24 '17 at 13:57

























          answered Nov 7 '14 at 6:53









          Graham KempGraham Kemp

          85.7k43378




          85.7k43378












          • $begingroup$
            for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:43










          • $begingroup$
            same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:53












          • $begingroup$
            @Graham Kemp What do you mean by min(x,t)?
            $endgroup$
            – AmaC
            Mar 24 '17 at 13:34










          • $begingroup$
            The minimum of $x$ and $t$.
            $endgroup$
            – Graham Kemp
            Mar 24 '17 at 13:42


















          • $begingroup$
            for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:43










          • $begingroup$
            same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
            $endgroup$
            – juniormath
            Nov 7 '14 at 7:53












          • $begingroup$
            @Graham Kemp What do you mean by min(x,t)?
            $endgroup$
            – AmaC
            Mar 24 '17 at 13:34










          • $begingroup$
            The minimum of $x$ and $t$.
            $endgroup$
            – Graham Kemp
            Mar 24 '17 at 13:42
















          $begingroup$
          for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
          $endgroup$
          – juniormath
          Nov 7 '14 at 7:43




          $begingroup$
          for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
          $endgroup$
          – juniormath
          Nov 7 '14 at 7:43












          $begingroup$
          same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
          $endgroup$
          – juniormath
          Nov 7 '14 at 7:53






          $begingroup$
          same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
          $endgroup$
          – juniormath
          Nov 7 '14 at 7:53














          $begingroup$
          @Graham Kemp What do you mean by min(x,t)?
          $endgroup$
          – AmaC
          Mar 24 '17 at 13:34




          $begingroup$
          @Graham Kemp What do you mean by min(x,t)?
          $endgroup$
          – AmaC
          Mar 24 '17 at 13:34












          $begingroup$
          The minimum of $x$ and $t$.
          $endgroup$
          – Graham Kemp
          Mar 24 '17 at 13:42




          $begingroup$
          The minimum of $x$ and $t$.
          $endgroup$
          – Graham Kemp
          Mar 24 '17 at 13:42


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1010170%2fwhat-is-the-joint-cdf-of-fx-y-2xy-0-leq-x-leq-y-leq-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith