What is the joint CDF of $f(x,y)=2(x+y), 0leq xleq yleq 1$
$begingroup$
I am trying to find the joint CDF of $f(x,y)=2(x+y) : 0leq xleq yleq 1$.
There are five different answers for the CDF depending on the restrictions of $x$ and $y$ that you use. I
found the CDF $F(x,y)=y^2x+x^2y-x^3mbox{ if }0leq xleq yleq 1$ and also I found the CDF $F(x,y)=0mbox{ if }x<0 land y<0$.
Now I need to find the CDF if $x>y$ and $0>y>1$ and then if $y>1$ and $0<x<1$. and for $y>1$ and $x>1$. I know how to do the integral and everything I am just unsure of what my bounds for each of these three integrals where we use double integrals would be.
probability integration probability-distributions
$endgroup$
add a comment |
$begingroup$
I am trying to find the joint CDF of $f(x,y)=2(x+y) : 0leq xleq yleq 1$.
There are five different answers for the CDF depending on the restrictions of $x$ and $y$ that you use. I
found the CDF $F(x,y)=y^2x+x^2y-x^3mbox{ if }0leq xleq yleq 1$ and also I found the CDF $F(x,y)=0mbox{ if }x<0 land y<0$.
Now I need to find the CDF if $x>y$ and $0>y>1$ and then if $y>1$ and $0<x<1$. and for $y>1$ and $x>1$. I know how to do the integral and everything I am just unsure of what my bounds for each of these three integrals where we use double integrals would be.
probability integration probability-distributions
$endgroup$
add a comment |
$begingroup$
I am trying to find the joint CDF of $f(x,y)=2(x+y) : 0leq xleq yleq 1$.
There are five different answers for the CDF depending on the restrictions of $x$ and $y$ that you use. I
found the CDF $F(x,y)=y^2x+x^2y-x^3mbox{ if }0leq xleq yleq 1$ and also I found the CDF $F(x,y)=0mbox{ if }x<0 land y<0$.
Now I need to find the CDF if $x>y$ and $0>y>1$ and then if $y>1$ and $0<x<1$. and for $y>1$ and $x>1$. I know how to do the integral and everything I am just unsure of what my bounds for each of these three integrals where we use double integrals would be.
probability integration probability-distributions
$endgroup$
I am trying to find the joint CDF of $f(x,y)=2(x+y) : 0leq xleq yleq 1$.
There are five different answers for the CDF depending on the restrictions of $x$ and $y$ that you use. I
found the CDF $F(x,y)=y^2x+x^2y-x^3mbox{ if }0leq xleq yleq 1$ and also I found the CDF $F(x,y)=0mbox{ if }x<0 land y<0$.
Now I need to find the CDF if $x>y$ and $0>y>1$ and then if $y>1$ and $0<x<1$. and for $y>1$ and $x>1$. I know how to do the integral and everything I am just unsure of what my bounds for each of these three integrals where we use double integrals would be.
probability integration probability-distributions
probability integration probability-distributions
edited Jan 13 at 9:42
rtybase
11k21533
11k21533
asked Nov 7 '14 at 5:41
juniormathjuniormath
155215
155215
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It looks like :
$$begin{align}F(x,y) ~&=~ begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
\[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
\[4pt] y^3 & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
end{align}$$
$endgroup$
$begingroup$
for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
$endgroup$
– juniormath
Nov 7 '14 at 7:43
$begingroup$
same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
$endgroup$
– juniormath
Nov 7 '14 at 7:53
$begingroup$
@Graham Kemp What do you mean by min(x,t)?
$endgroup$
– AmaC
Mar 24 '17 at 13:34
$begingroup$
The minimum of $x$ and $t$.
$endgroup$
– Graham Kemp
Mar 24 '17 at 13:42
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1010170%2fwhat-is-the-joint-cdf-of-fx-y-2xy-0-leq-x-leq-y-leq-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It looks like :
$$begin{align}F(x,y) ~&=~ begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
\[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
\[4pt] y^3 & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
end{align}$$
$endgroup$
$begingroup$
for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
$endgroup$
– juniormath
Nov 7 '14 at 7:43
$begingroup$
same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
$endgroup$
– juniormath
Nov 7 '14 at 7:53
$begingroup$
@Graham Kemp What do you mean by min(x,t)?
$endgroup$
– AmaC
Mar 24 '17 at 13:34
$begingroup$
The minimum of $x$ and $t$.
$endgroup$
– Graham Kemp
Mar 24 '17 at 13:42
add a comment |
$begingroup$
It looks like :
$$begin{align}F(x,y) ~&=~ begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
\[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
\[4pt] y^3 & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
end{align}$$
$endgroup$
$begingroup$
for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
$endgroup$
– juniormath
Nov 7 '14 at 7:43
$begingroup$
same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
$endgroup$
– juniormath
Nov 7 '14 at 7:53
$begingroup$
@Graham Kemp What do you mean by min(x,t)?
$endgroup$
– AmaC
Mar 24 '17 at 13:34
$begingroup$
The minimum of $x$ and $t$.
$endgroup$
– Graham Kemp
Mar 24 '17 at 13:42
add a comment |
$begingroup$
It looks like :
$$begin{align}F(x,y) ~&=~ begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
\[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
\[4pt] y^3 & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
end{align}$$
$endgroup$
It looks like :
$$begin{align}F(x,y) ~&=~ begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^yint_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^1 int_0^{min(x,t)} f(s,t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t f(s,t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] int_0^xint_0^t 2(s+t)operatorname d soperatorname d t+
int_x^yint_0^x 2(s+t)operatorname d soperatorname d t & : 0 leq x leq y leq 1
\[4pt] int_0^xint_0^t2(s+t)operatorname d soperatorname d t+
int_x^1 int_0^x 2(s+t)operatorname d soperatorname d t & : 0leq xleq 1, y> 1
\[4pt] int_0^y int_0^t 2(s+t)operatorname d soperatorname d t & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
\[2ex] &=~begin{cases}
0 & : x<0 lor y< 0
\[4pt] x y^2+ x^2 y -x^3 & : 0 leq x leq y leq 1
\[4pt] x + x^2 -x^3 & : 0leq xleq 1, y> 1
\[4pt] y^3 & : 0leq yleq 1, x> y
\[4pt] 1 & : x> 1 land y>1
end{cases}
end{align}$$
edited Mar 24 '17 at 13:57
answered Nov 7 '14 at 6:53


Graham KempGraham Kemp
85.7k43378
85.7k43378
$begingroup$
for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
$endgroup$
– juniormath
Nov 7 '14 at 7:43
$begingroup$
same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
$endgroup$
– juniormath
Nov 7 '14 at 7:53
$begingroup$
@Graham Kemp What do you mean by min(x,t)?
$endgroup$
– AmaC
Mar 24 '17 at 13:34
$begingroup$
The minimum of $x$ and $t$.
$endgroup$
– Graham Kemp
Mar 24 '17 at 13:42
add a comment |
$begingroup$
for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
$endgroup$
– juniormath
Nov 7 '14 at 7:43
$begingroup$
same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
$endgroup$
– juniormath
Nov 7 '14 at 7:53
$begingroup$
@Graham Kemp What do you mean by min(x,t)?
$endgroup$
– AmaC
Mar 24 '17 at 13:34
$begingroup$
The minimum of $x$ and $t$.
$endgroup$
– Graham Kemp
Mar 24 '17 at 13:42
$begingroup$
for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
$endgroup$
– juniormath
Nov 7 '14 at 7:43
$begingroup$
for the fourth one I happen to know the answer is y^3 so those bounds do not work for that.
$endgroup$
– juniormath
Nov 7 '14 at 7:43
$begingroup$
same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
$endgroup$
– juniormath
Nov 7 '14 at 7:53
$begingroup$
same with the third one. The answer is x+x^2-x^3 and I am getting just x+x^2 with those bounds @GrahamKemp
$endgroup$
– juniormath
Nov 7 '14 at 7:53
$begingroup$
@Graham Kemp What do you mean by min(x,t)?
$endgroup$
– AmaC
Mar 24 '17 at 13:34
$begingroup$
@Graham Kemp What do you mean by min(x,t)?
$endgroup$
– AmaC
Mar 24 '17 at 13:34
$begingroup$
The minimum of $x$ and $t$.
$endgroup$
– Graham Kemp
Mar 24 '17 at 13:42
$begingroup$
The minimum of $x$ and $t$.
$endgroup$
– Graham Kemp
Mar 24 '17 at 13:42
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1010170%2fwhat-is-the-joint-cdf-of-fx-y-2xy-0-leq-x-leq-y-leq-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown