Dualilty map in Banach space












0












$begingroup$


Let $X$ be a Banach space, we define



$ phi_-(y)=lim_{trightarrow{0^+}}=frac{|x|-|x-ty|}{t} $
$phi_+(y)=lim_{trightarrow{0^+}}=frac{|x+ty|-|x|}{t} $



Then $ M^*(x)= { x* in X^*: phi_-(y)leq x^*(y) leq phi_+(y) }={x^* in X^*: |x^*|=1 and x*(x)=|x|}.$



I don't know how to prove the last equality.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let $X$ be a Banach space, we define



    $ phi_-(y)=lim_{trightarrow{0^+}}=frac{|x|-|x-ty|}{t} $
    $phi_+(y)=lim_{trightarrow{0^+}}=frac{|x+ty|-|x|}{t} $



    Then $ M^*(x)= { x* in X^*: phi_-(y)leq x^*(y) leq phi_+(y) }={x^* in X^*: |x^*|=1 and x*(x)=|x|}.$



    I don't know how to prove the last equality.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let $X$ be a Banach space, we define



      $ phi_-(y)=lim_{trightarrow{0^+}}=frac{|x|-|x-ty|}{t} $
      $phi_+(y)=lim_{trightarrow{0^+}}=frac{|x+ty|-|x|}{t} $



      Then $ M^*(x)= { x* in X^*: phi_-(y)leq x^*(y) leq phi_+(y) }={x^* in X^*: |x^*|=1 and x*(x)=|x|}.$



      I don't know how to prove the last equality.










      share|cite|improve this question









      $endgroup$




      Let $X$ be a Banach space, we define



      $ phi_-(y)=lim_{trightarrow{0^+}}=frac{|x|-|x-ty|}{t} $
      $phi_+(y)=lim_{trightarrow{0^+}}=frac{|x+ty|-|x|}{t} $



      Then $ M^*(x)= { x* in X^*: phi_-(y)leq x^*(y) leq phi_+(y) }={x^* in X^*: |x^*|=1 and x*(x)=|x|}.$



      I don't know how to prove the last equality.







      banach-spaces dual-spaces






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 21 at 11:37









      MikeypolMikeypol

      83




      83






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much.
            $endgroup$
            – Mikeypol
            Jan 21 at 12:22



















          0












          $begingroup$

          Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$



          Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081772%2fdualilty-map-in-banach-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you so much.
              $endgroup$
              – Mikeypol
              Jan 21 at 12:22
















            0












            $begingroup$

            In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you so much.
              $endgroup$
              – Mikeypol
              Jan 21 at 12:22














            0












            0








            0





            $begingroup$

            In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.






            share|cite|improve this answer









            $endgroup$



            In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 21 at 11:57









            Kavi Rama MurthyKavi Rama Murthy

            65.3k42766




            65.3k42766












            • $begingroup$
              Thank you so much.
              $endgroup$
              – Mikeypol
              Jan 21 at 12:22


















            • $begingroup$
              Thank you so much.
              $endgroup$
              – Mikeypol
              Jan 21 at 12:22
















            $begingroup$
            Thank you so much.
            $endgroup$
            – Mikeypol
            Jan 21 at 12:22




            $begingroup$
            Thank you so much.
            $endgroup$
            – Mikeypol
            Jan 21 at 12:22











            0












            $begingroup$

            Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$



            Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$



              Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$



                Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$






                share|cite|improve this answer









                $endgroup$



                Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$



                Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 21 at 11:56









                FredFred

                47.7k1849




                47.7k1849






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081772%2fdualilty-map-in-banach-space%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                    Npm cannot find a required file even through it is in the searched directory