Dualilty map in Banach space
$begingroup$
Let $X$ be a Banach space, we define
$ phi_-(y)=lim_{trightarrow{0^+}}=frac{|x|-|x-ty|}{t} $
$phi_+(y)=lim_{trightarrow{0^+}}=frac{|x+ty|-|x|}{t} $
Then $ M^*(x)= { x* in X^*: phi_-(y)leq x^*(y) leq phi_+(y) }={x^* in X^*: |x^*|=1 and x*(x)=|x|}.$
I don't know how to prove the last equality.
banach-spaces dual-spaces
$endgroup$
add a comment |
$begingroup$
Let $X$ be a Banach space, we define
$ phi_-(y)=lim_{trightarrow{0^+}}=frac{|x|-|x-ty|}{t} $
$phi_+(y)=lim_{trightarrow{0^+}}=frac{|x+ty|-|x|}{t} $
Then $ M^*(x)= { x* in X^*: phi_-(y)leq x^*(y) leq phi_+(y) }={x^* in X^*: |x^*|=1 and x*(x)=|x|}.$
I don't know how to prove the last equality.
banach-spaces dual-spaces
$endgroup$
add a comment |
$begingroup$
Let $X$ be a Banach space, we define
$ phi_-(y)=lim_{trightarrow{0^+}}=frac{|x|-|x-ty|}{t} $
$phi_+(y)=lim_{trightarrow{0^+}}=frac{|x+ty|-|x|}{t} $
Then $ M^*(x)= { x* in X^*: phi_-(y)leq x^*(y) leq phi_+(y) }={x^* in X^*: |x^*|=1 and x*(x)=|x|}.$
I don't know how to prove the last equality.
banach-spaces dual-spaces
$endgroup$
Let $X$ be a Banach space, we define
$ phi_-(y)=lim_{trightarrow{0^+}}=frac{|x|-|x-ty|}{t} $
$phi_+(y)=lim_{trightarrow{0^+}}=frac{|x+ty|-|x|}{t} $
Then $ M^*(x)= { x* in X^*: phi_-(y)leq x^*(y) leq phi_+(y) }={x^* in X^*: |x^*|=1 and x*(x)=|x|}.$
I don't know how to prove the last equality.
banach-spaces dual-spaces
banach-spaces dual-spaces
asked Jan 21 at 11:37
MikeypolMikeypol
83
83
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Mikeypol
Jan 21 at 12:22
add a comment |
$begingroup$
Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$
Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081772%2fdualilty-map-in-banach-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Mikeypol
Jan 21 at 12:22
add a comment |
$begingroup$
In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Mikeypol
Jan 21 at 12:22
add a comment |
$begingroup$
In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.
$endgroup$
In the definition of $M^{*}(x)$ 'for all $y$' is misssing. Suppose $phi_{-} (y) leq x^{*} (y) leq phi_{+} (y)$ for all $y$. Then, taking $y=x$ we get $lim frac {1- |1-t|} {t} |x| leq x^{*} (y) leq lim frac {|1+t|-1} {t} |x|$ form which we get $|x| leq x^{*}(x) leq |x|$. Hence $x^{*} (x)=|x|$. Also, $x^{*} (y) leq phi_{+} (y) leq |y|$ for all $y$ so $|x^{*}|leq 1$. Together with $x^{*} (x)=|x|$ this implies $|x^{*}|=1$. Conversely, suppose $x^{*} (x)=|x|$ and $|x^{*}|=1$. Then $frac {|x|-|x-ty|} {t} leq frac {x^{*} (x)-x^{*} (x-ty)} t =x^{*} (y)$. Similarly, we get the second inequality.
answered Jan 21 at 11:57


Kavi Rama MurthyKavi Rama Murthy
65.3k42766
65.3k42766
$begingroup$
Thank you so much.
$endgroup$
– Mikeypol
Jan 21 at 12:22
add a comment |
$begingroup$
Thank you so much.
$endgroup$
– Mikeypol
Jan 21 at 12:22
$begingroup$
Thank you so much.
$endgroup$
– Mikeypol
Jan 21 at 12:22
$begingroup$
Thank you so much.
$endgroup$
– Mikeypol
Jan 21 at 12:22
add a comment |
$begingroup$
Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$
Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$
$endgroup$
add a comment |
$begingroup$
Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$
Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$
$endgroup$
add a comment |
$begingroup$
Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$
Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$
$endgroup$
Something went wrong ! For $y=0$ we have $phi_{-}(0)=0=phi_+(0).$
Hence $M^*(x)=X^* ne {x^* in X^*: |x^*|=1 and x*(x)=|x|}.$
answered Jan 21 at 11:56


FredFred
47.7k1849
47.7k1849
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081772%2fdualilty-map-in-banach-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown