Proof by induction for tricky double summation: $(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$...












1












$begingroup$



This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers




let $x_1....x_n$ be positive integers. Prove by induction the following for natural numbers n:



$(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$



Hint: for all positive integers a,b: $frac{a}{b}+frac{b}{a}ge2$










share|cite|improve this question











$endgroup$



marked as duplicate by Martin Sleziak, Martin R, Lord_Farin, Paul Frost, saz Jan 21 at 19:04


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1




    $begingroup$
    I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
    $endgroup$
    – Wojowu
    Oct 31 '15 at 14:47










  • $begingroup$
    Oh I'm sorry I missed a part out! I shall fix now
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:35










  • $begingroup$
    @JackD'Aurizio I have fixed it now
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:37










  • $begingroup$
    @Wojowu yes you are right
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:38
















1












$begingroup$



This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers




let $x_1....x_n$ be positive integers. Prove by induction the following for natural numbers n:



$(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$



Hint: for all positive integers a,b: $frac{a}{b}+frac{b}{a}ge2$










share|cite|improve this question











$endgroup$



marked as duplicate by Martin Sleziak, Martin R, Lord_Farin, Paul Frost, saz Jan 21 at 19:04


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1




    $begingroup$
    I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
    $endgroup$
    – Wojowu
    Oct 31 '15 at 14:47










  • $begingroup$
    Oh I'm sorry I missed a part out! I shall fix now
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:35










  • $begingroup$
    @JackD'Aurizio I have fixed it now
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:37










  • $begingroup$
    @Wojowu yes you are right
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:38














1












1








1





$begingroup$



This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers




let $x_1....x_n$ be positive integers. Prove by induction the following for natural numbers n:



$(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$



Hint: for all positive integers a,b: $frac{a}{b}+frac{b}{a}ge2$










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers




let $x_1....x_n$ be positive integers. Prove by induction the following for natural numbers n:



$(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$



Hint: for all positive integers a,b: $frac{a}{b}+frac{b}{a}ge2$





This question already has an answer here:




  • Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$

    7 answers








inequality summation induction






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 21 at 13:59









Martin Sleziak

44.8k10119273




44.8k10119273










asked Oct 31 '15 at 14:41









Cam MackCam Mack

185




185




marked as duplicate by Martin Sleziak, Martin R, Lord_Farin, Paul Frost, saz Jan 21 at 19:04


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Martin Sleziak, Martin R, Lord_Farin, Paul Frost, saz Jan 21 at 19:04


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1




    $begingroup$
    I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
    $endgroup$
    – Wojowu
    Oct 31 '15 at 14:47










  • $begingroup$
    Oh I'm sorry I missed a part out! I shall fix now
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:35










  • $begingroup$
    @JackD'Aurizio I have fixed it now
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:37










  • $begingroup$
    @Wojowu yes you are right
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:38














  • 1




    $begingroup$
    I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
    $endgroup$
    – Wojowu
    Oct 31 '15 at 14:47










  • $begingroup$
    Oh I'm sorry I missed a part out! I shall fix now
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:35










  • $begingroup$
    @JackD'Aurizio I have fixed it now
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:37










  • $begingroup$
    @Wojowu yes you are right
    $endgroup$
    – Cam Mack
    Oct 31 '15 at 15:38








1




1




$begingroup$
I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
$endgroup$
– Wojowu
Oct 31 '15 at 14:47




$begingroup$
I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
$endgroup$
– Wojowu
Oct 31 '15 at 14:47












$begingroup$
Oh I'm sorry I missed a part out! I shall fix now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:35




$begingroup$
Oh I'm sorry I missed a part out! I shall fix now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:35












$begingroup$
@JackD'Aurizio I have fixed it now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:37




$begingroup$
@JackD'Aurizio I have fixed it now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:37












$begingroup$
@Wojowu yes you are right
$endgroup$
– Cam Mack
Oct 31 '15 at 15:38




$begingroup$
@Wojowu yes you are right
$endgroup$
– Cam Mack
Oct 31 '15 at 15:38










1 Answer
1






active

oldest

votes


















3












$begingroup$

The inductive step should be



$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and



$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
    $endgroup$
    – Martin Sleziak
    Jan 21 at 14:34


















1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

The inductive step should be



$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and



$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
    $endgroup$
    – Martin Sleziak
    Jan 21 at 14:34
















3












$begingroup$

The inductive step should be



$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and



$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
    $endgroup$
    – Martin Sleziak
    Jan 21 at 14:34














3












3








3





$begingroup$

The inductive step should be



$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and



$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$






share|cite|improve this answer









$endgroup$



The inductive step should be



$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and



$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Oct 31 '15 at 15:47









Chris KerridgeChris Kerridge

1,01137




1,01137












  • $begingroup$
    I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
    $endgroup$
    – Martin Sleziak
    Jan 21 at 14:34


















  • $begingroup$
    I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
    $endgroup$
    – Martin Sleziak
    Jan 21 at 14:34
















$begingroup$
I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
$endgroup$
– Martin Sleziak
Jan 21 at 14:34




$begingroup$
I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
$endgroup$
– Martin Sleziak
Jan 21 at 14:34



Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]