Proof by induction for tricky double summation: $(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$...
$begingroup$
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
let $x_1....x_n$ be positive integers. Prove by induction the following for natural numbers n:
$(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$
Hint: for all positive integers a,b: $frac{a}{b}+frac{b}{a}ge2$
inequality summation induction
$endgroup$
marked as duplicate by Martin Sleziak, Martin R, Lord_Farin, Paul Frost, saz Jan 21 at 19:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
let $x_1....x_n$ be positive integers. Prove by induction the following for natural numbers n:
$(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$
Hint: for all positive integers a,b: $frac{a}{b}+frac{b}{a}ge2$
inequality summation induction
$endgroup$
marked as duplicate by Martin Sleziak, Martin R, Lord_Farin, Paul Frost, saz Jan 21 at 19:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
$endgroup$
– Wojowu
Oct 31 '15 at 14:47
$begingroup$
Oh I'm sorry I missed a part out! I shall fix now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:35
$begingroup$
@JackD'Aurizio I have fixed it now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:37
$begingroup$
@Wojowu yes you are right
$endgroup$
– Cam Mack
Oct 31 '15 at 15:38
add a comment |
$begingroup$
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
let $x_1....x_n$ be positive integers. Prove by induction the following for natural numbers n:
$(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$
Hint: for all positive integers a,b: $frac{a}{b}+frac{b}{a}ge2$
inequality summation induction
$endgroup$
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
let $x_1....x_n$ be positive integers. Prove by induction the following for natural numbers n:
$(sum_{k=1}^n x_k)cdot(sum_{k=1}^n frac{1}{x_k})ge{n^2}$
Hint: for all positive integers a,b: $frac{a}{b}+frac{b}{a}ge2$
This question already has an answer here:
Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$
7 answers
inequality summation induction
inequality summation induction
edited Jan 21 at 13:59
Martin Sleziak
44.8k10119273
44.8k10119273
asked Oct 31 '15 at 14:41
Cam MackCam Mack
185
185
marked as duplicate by Martin Sleziak, Martin R, Lord_Farin, Paul Frost, saz Jan 21 at 19:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Martin Sleziak, Martin R, Lord_Farin, Paul Frost, saz Jan 21 at 19:04
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
$endgroup$
– Wojowu
Oct 31 '15 at 14:47
$begingroup$
Oh I'm sorry I missed a part out! I shall fix now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:35
$begingroup$
@JackD'Aurizio I have fixed it now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:37
$begingroup$
@Wojowu yes you are right
$endgroup$
– Cam Mack
Oct 31 '15 at 15:38
add a comment |
1
$begingroup$
I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
$endgroup$
– Wojowu
Oct 31 '15 at 14:47
$begingroup$
Oh I'm sorry I missed a part out! I shall fix now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:35
$begingroup$
@JackD'Aurizio I have fixed it now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:37
$begingroup$
@Wojowu yes you are right
$endgroup$
– Cam Mack
Oct 31 '15 at 15:38
1
1
$begingroup$
I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
$endgroup$
– Wojowu
Oct 31 '15 at 14:47
$begingroup$
I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
$endgroup$
– Wojowu
Oct 31 '15 at 14:47
$begingroup$
Oh I'm sorry I missed a part out! I shall fix now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:35
$begingroup$
Oh I'm sorry I missed a part out! I shall fix now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:35
$begingroup$
@JackD'Aurizio I have fixed it now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:37
$begingroup$
@JackD'Aurizio I have fixed it now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:37
$begingroup$
@Wojowu yes you are right
$endgroup$
– Cam Mack
Oct 31 '15 at 15:38
$begingroup$
@Wojowu yes you are right
$endgroup$
– Cam Mack
Oct 31 '15 at 15:38
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The inductive step should be
$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and
$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$
$endgroup$
$begingroup$
I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
$endgroup$
– Martin Sleziak
Jan 21 at 14:34
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The inductive step should be
$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and
$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$
$endgroup$
$begingroup$
I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
$endgroup$
– Martin Sleziak
Jan 21 at 14:34
add a comment |
$begingroup$
The inductive step should be
$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and
$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$
$endgroup$
$begingroup$
I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
$endgroup$
– Martin Sleziak
Jan 21 at 14:34
add a comment |
$begingroup$
The inductive step should be
$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and
$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$
$endgroup$
The inductive step should be
$$left(sum_{i=1}^n x_iright)left(sum_{i=1}^n frac{1}{x_i}right)$$
$$=left(sum_{i=1}^{n-1} x_i + x_nright)left(sum_{i=1}^{n-1} frac{1}{x_i} + frac{1}{x_n}right)$$
$$=left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1$$
Now
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) geq (n-1)^2$$
and
$$frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1} frac{1}{x_i}right) = sum_{i=1}^{n-1}left(frac{x_i}{x_n} + frac{x_n}{x_i}right) geq 2(n-1)$$
so that
$$left(sum_{i=1}^{n-1} x_iright)left(sum_{i=1}^{n-1} frac{1}{x_i}right) + frac{1}{x_n}left(sum_{i=1}^{n-1} x_iright) + x_nleft(sum_{i=1}^{n-1}frac{1}{x_i}right) + 1 geq (n-1)^2 + 2(n-1) + 1 = ((n-1) + 1)^2 = n^2$$
answered Oct 31 '15 at 15:47
Chris KerridgeChris Kerridge
1,01137
1,01137
$begingroup$
I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
$endgroup$
– Martin Sleziak
Jan 21 at 14:34
add a comment |
$begingroup$
I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
$endgroup$
– Martin Sleziak
Jan 21 at 14:34
$begingroup$
I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
$endgroup$
– Martin Sleziak
Jan 21 at 14:34
$begingroup$
I will mention that a similar proof can be found in this answer: Proof that $left(sum^n_{k=1}x_kright)left(sum^n_{k=1}y_kright)geq n^2$.
$endgroup$
– Martin Sleziak
Jan 21 at 14:34
add a comment |
1
$begingroup$
I highly suspect that OP is supposed to prove that given expression is $geq n^2$.
$endgroup$
– Wojowu
Oct 31 '15 at 14:47
$begingroup$
Oh I'm sorry I missed a part out! I shall fix now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:35
$begingroup$
@JackD'Aurizio I have fixed it now
$endgroup$
– Cam Mack
Oct 31 '15 at 15:37
$begingroup$
@Wojowu yes you are right
$endgroup$
– Cam Mack
Oct 31 '15 at 15:38