Closed form for product of Stirling numbers of the second kind
$begingroup$
What does the following expression evaluate to:
begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring $left(text{i.e., } k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}right)$ takes us to a different power series or just to a different coefficient in the same power series? I am looking for some clean closed form. A related expression:
begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
is proven to be equal to $n^n$ in this answer https://math.stackexchange.com/q/3076350.
Note: The series $1,6,147,6940,536405,62352066, dots$ is not on oeis.org
combinatorics power-series binomial-coefficients stirling-numbers
$endgroup$
add a comment |
$begingroup$
What does the following expression evaluate to:
begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring $left(text{i.e., } k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}right)$ takes us to a different power series or just to a different coefficient in the same power series? I am looking for some clean closed form. A related expression:
begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
is proven to be equal to $n^n$ in this answer https://math.stackexchange.com/q/3076350.
Note: The series $1,6,147,6940,536405,62352066, dots$ is not on oeis.org
combinatorics power-series binomial-coefficients stirling-numbers
$endgroup$
add a comment |
$begingroup$
What does the following expression evaluate to:
begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring $left(text{i.e., } k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}right)$ takes us to a different power series or just to a different coefficient in the same power series? I am looking for some clean closed form. A related expression:
begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
is proven to be equal to $n^n$ in this answer https://math.stackexchange.com/q/3076350.
Note: The series $1,6,147,6940,536405,62352066, dots$ is not on oeis.org
combinatorics power-series binomial-coefficients stirling-numbers
$endgroup$
What does the following expression evaluate to:
begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring $left(text{i.e., } k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}right)$ takes us to a different power series or just to a different coefficient in the same power series? I am looking for some clean closed form. A related expression:
begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
is proven to be equal to $n^n$ in this answer https://math.stackexchange.com/q/3076350.
Note: The series $1,6,147,6940,536405,62352066, dots$ is not on oeis.org
combinatorics power-series binomial-coefficients stirling-numbers
combinatorics power-series binomial-coefficients stirling-numbers
edited Jan 21 at 18:06
Singh
asked Jan 21 at 14:52
SinghSingh
454
454
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
$$
m!left{ matrix{ n cr m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
$$
therefrom we can write our sum as
$$
eqalign{
& S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
& = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
& = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
$$
The e.g.f. for $S(n)$ then is
$$
sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
= sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
} } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
$$
Indicating the Touchard polynomials as
$$
T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} }
= e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
$$
and the second polynomial as
$$
P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
$$
we get
$$
S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
$$
Concerning the polynomial $P_n(x)$ let's evidence that, since
$$
{1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
= sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
= sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
$$
then denoting $P_{, n, , m}(x)$ as
$$
P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
$$
we easily reach to
$$
eqalign{
& sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
= e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
& = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
$$
so that we can define $P_n(x)$ in another way as
$$
P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
$$
$endgroup$
2
$begingroup$
thanks for the appreciation and .. bounty!
$endgroup$
– G Cab
Jan 27 at 15:50
2
$begingroup$
Thanks for your help, and @NoviceGeek for offering the bounty.
$endgroup$
– Singh
Jan 27 at 16:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081960%2fclosed-form-for-product-of-stirling-numbers-of-the-second-kind%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
$$
m!left{ matrix{ n cr m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
$$
therefrom we can write our sum as
$$
eqalign{
& S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
& = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
& = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
$$
The e.g.f. for $S(n)$ then is
$$
sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
= sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
} } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
$$
Indicating the Touchard polynomials as
$$
T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} }
= e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
$$
and the second polynomial as
$$
P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
$$
we get
$$
S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
$$
Concerning the polynomial $P_n(x)$ let's evidence that, since
$$
{1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
= sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
= sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
$$
then denoting $P_{, n, , m}(x)$ as
$$
P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
$$
we easily reach to
$$
eqalign{
& sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
= e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
& = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
$$
so that we can define $P_n(x)$ in another way as
$$
P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
$$
$endgroup$
2
$begingroup$
thanks for the appreciation and .. bounty!
$endgroup$
– G Cab
Jan 27 at 15:50
2
$begingroup$
Thanks for your help, and @NoviceGeek for offering the bounty.
$endgroup$
– Singh
Jan 27 at 16:12
add a comment |
$begingroup$
Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
$$
m!left{ matrix{ n cr m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
$$
therefrom we can write our sum as
$$
eqalign{
& S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
& = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
& = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
$$
The e.g.f. for $S(n)$ then is
$$
sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
= sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
} } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
$$
Indicating the Touchard polynomials as
$$
T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} }
= e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
$$
and the second polynomial as
$$
P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
$$
we get
$$
S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
$$
Concerning the polynomial $P_n(x)$ let's evidence that, since
$$
{1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
= sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
= sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
$$
then denoting $P_{, n, , m}(x)$ as
$$
P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
$$
we easily reach to
$$
eqalign{
& sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
= e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
& = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
$$
so that we can define $P_n(x)$ in another way as
$$
P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
$$
$endgroup$
2
$begingroup$
thanks for the appreciation and .. bounty!
$endgroup$
– G Cab
Jan 27 at 15:50
2
$begingroup$
Thanks for your help, and @NoviceGeek for offering the bounty.
$endgroup$
– Singh
Jan 27 at 16:12
add a comment |
$begingroup$
Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
$$
m!left{ matrix{ n cr m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
$$
therefrom we can write our sum as
$$
eqalign{
& S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
& = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
& = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
$$
The e.g.f. for $S(n)$ then is
$$
sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
= sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
} } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
$$
Indicating the Touchard polynomials as
$$
T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} }
= e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
$$
and the second polynomial as
$$
P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
$$
we get
$$
S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
$$
Concerning the polynomial $P_n(x)$ let's evidence that, since
$$
{1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
= sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
= sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
$$
then denoting $P_{, n, , m}(x)$ as
$$
P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
$$
we easily reach to
$$
eqalign{
& sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
= e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
& = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
$$
so that we can define $P_n(x)$ in another way as
$$
P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
$$
$endgroup$
Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
$$
m!left{ matrix{ n cr m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
$$
therefrom we can write our sum as
$$
eqalign{
& S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
& = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
& = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
{leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
$$
The e.g.f. for $S(n)$ then is
$$
sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
= sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
} } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
$$
Indicating the Touchard polynomials as
$$
T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left{ matrix{n cr k cr} right}x^{,k} }
= e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
$$
and the second polynomial as
$$
P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
= sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
$$
we get
$$
S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
$$
Concerning the polynomial $P_n(x)$ let's evidence that, since
$$
{1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
= sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
= sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
$$
then denoting $P_{, n, , m}(x)$ as
$$
P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
$$
we easily reach to
$$
eqalign{
& sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
= e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
& = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
$$
so that we can define $P_n(x)$ in another way as
$$
P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
$$
edited Jan 25 at 21:23
answered Jan 25 at 17:07
G CabG Cab
19.9k31340
19.9k31340
2
$begingroup$
thanks for the appreciation and .. bounty!
$endgroup$
– G Cab
Jan 27 at 15:50
2
$begingroup$
Thanks for your help, and @NoviceGeek for offering the bounty.
$endgroup$
– Singh
Jan 27 at 16:12
add a comment |
2
$begingroup$
thanks for the appreciation and .. bounty!
$endgroup$
– G Cab
Jan 27 at 15:50
2
$begingroup$
Thanks for your help, and @NoviceGeek for offering the bounty.
$endgroup$
– Singh
Jan 27 at 16:12
2
2
$begingroup$
thanks for the appreciation and .. bounty!
$endgroup$
– G Cab
Jan 27 at 15:50
$begingroup$
thanks for the appreciation and .. bounty!
$endgroup$
– G Cab
Jan 27 at 15:50
2
2
$begingroup$
Thanks for your help, and @NoviceGeek for offering the bounty.
$endgroup$
– Singh
Jan 27 at 16:12
$begingroup$
Thanks for your help, and @NoviceGeek for offering the bounty.
$endgroup$
– Singh
Jan 27 at 16:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081960%2fclosed-form-for-product-of-stirling-numbers-of-the-second-kind%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown