Closed form for product of Stirling numbers of the second kind












6












$begingroup$


What does the following expression evaluate to:



begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}



We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring $left(text{i.e., } k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}right)$ takes us to a different power series or just to a different coefficient in the same power series? I am looking for some clean closed form. A related expression:



begin{equation}
sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}



is proven to be equal to $n^n$ in this answer https://math.stackexchange.com/q/3076350.



Note: The series $1,6,147,6940,536405,62352066, dots$ is not on oeis.org










share|cite|improve this question











$endgroup$

















    6












    $begingroup$


    What does the following expression evaluate to:



    begin{equation}
    sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
    end{equation}



    We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring $left(text{i.e., } k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}right)$ takes us to a different power series or just to a different coefficient in the same power series? I am looking for some clean closed form. A related expression:



    begin{equation}
    sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
    end{equation}



    is proven to be equal to $n^n$ in this answer https://math.stackexchange.com/q/3076350.



    Note: The series $1,6,147,6940,536405,62352066, dots$ is not on oeis.org










    share|cite|improve this question











    $endgroup$















      6












      6








      6


      3



      $begingroup$


      What does the following expression evaluate to:



      begin{equation}
      sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
      end{equation}



      We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring $left(text{i.e., } k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}right)$ takes us to a different power series or just to a different coefficient in the same power series? I am looking for some clean closed form. A related expression:



      begin{equation}
      sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
      end{equation}



      is proven to be equal to $n^n$ in this answer https://math.stackexchange.com/q/3076350.



      Note: The series $1,6,147,6940,536405,62352066, dots$ is not on oeis.org










      share|cite|improve this question











      $endgroup$




      What does the following expression evaluate to:



      begin{equation}
      sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
      end{equation}



      We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring $left(text{i.e., } k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}right)$ takes us to a different power series or just to a different coefficient in the same power series? I am looking for some clean closed form. A related expression:



      begin{equation}
      sumlimits_{k=1}^n dbinom{n}{k} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
      end{equation}



      is proven to be equal to $n^n$ in this answer https://math.stackexchange.com/q/3076350.



      Note: The series $1,6,147,6940,536405,62352066, dots$ is not on oeis.org







      combinatorics power-series binomial-coefficients stirling-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 21 at 18:06







      Singh

















      asked Jan 21 at 14:52









      SinghSingh

      454




      454






















          1 Answer
          1






          active

          oldest

          votes


















          3





          +50







          $begingroup$

          Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
          $$
          m!left{ matrix{ n cr m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
          quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
          $$

          therefrom we can write our sum as
          $$
          eqalign{
          & S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
          & = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
          sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
          & = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
          $$



          The e.g.f. for $S(n)$ then is
          $$
          sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
          = sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
          } } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
          $$



          Indicating the Touchard polynomials as
          $$
          T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} }
          = e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
          $$

          and the second polynomial as
          $$
          P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
          $$



          we get
          $$
          S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
          $$



          Concerning the polynomial $P_n(x)$ let's evidence that, since
          $$
          {1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
          = sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
          = sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
          $$

          then denoting $P_{, n, , m}(x)$ as
          $$
          P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
          $$

          we easily reach to
          $$
          eqalign{
          & sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
          = e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
          & = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
          $$

          so that we can define $P_n(x)$ in another way as
          $$
          P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
          $$






          share|cite|improve this answer











          $endgroup$









          • 2




            $begingroup$
            thanks for the appreciation and .. bounty!
            $endgroup$
            – G Cab
            Jan 27 at 15:50






          • 2




            $begingroup$
            Thanks for your help, and @NoviceGeek for offering the bounty.
            $endgroup$
            – Singh
            Jan 27 at 16:12











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081960%2fclosed-form-for-product-of-stirling-numbers-of-the-second-kind%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3





          +50







          $begingroup$

          Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
          $$
          m!left{ matrix{ n cr m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
          quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
          $$

          therefrom we can write our sum as
          $$
          eqalign{
          & S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
          & = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
          sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
          & = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
          $$



          The e.g.f. for $S(n)$ then is
          $$
          sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
          = sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
          } } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
          $$



          Indicating the Touchard polynomials as
          $$
          T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} }
          = e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
          $$

          and the second polynomial as
          $$
          P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
          $$



          we get
          $$
          S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
          $$



          Concerning the polynomial $P_n(x)$ let's evidence that, since
          $$
          {1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
          = sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
          = sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
          $$

          then denoting $P_{, n, , m}(x)$ as
          $$
          P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
          $$

          we easily reach to
          $$
          eqalign{
          & sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
          = e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
          & = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
          $$

          so that we can define $P_n(x)$ in another way as
          $$
          P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
          $$






          share|cite|improve this answer











          $endgroup$









          • 2




            $begingroup$
            thanks for the appreciation and .. bounty!
            $endgroup$
            – G Cab
            Jan 27 at 15:50






          • 2




            $begingroup$
            Thanks for your help, and @NoviceGeek for offering the bounty.
            $endgroup$
            – Singh
            Jan 27 at 16:12
















          3





          +50







          $begingroup$

          Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
          $$
          m!left{ matrix{ n cr m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
          quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
          $$

          therefrom we can write our sum as
          $$
          eqalign{
          & S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
          & = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
          sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
          & = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
          $$



          The e.g.f. for $S(n)$ then is
          $$
          sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
          = sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
          } } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
          $$



          Indicating the Touchard polynomials as
          $$
          T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} }
          = e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
          $$

          and the second polynomial as
          $$
          P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
          $$



          we get
          $$
          S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
          $$



          Concerning the polynomial $P_n(x)$ let's evidence that, since
          $$
          {1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
          = sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
          = sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
          $$

          then denoting $P_{, n, , m}(x)$ as
          $$
          P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
          $$

          we easily reach to
          $$
          eqalign{
          & sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
          = e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
          & = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
          $$

          so that we can define $P_n(x)$ in another way as
          $$
          P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
          $$






          share|cite|improve this answer











          $endgroup$









          • 2




            $begingroup$
            thanks for the appreciation and .. bounty!
            $endgroup$
            – G Cab
            Jan 27 at 15:50






          • 2




            $begingroup$
            Thanks for your help, and @NoviceGeek for offering the bounty.
            $endgroup$
            – Singh
            Jan 27 at 16:12














          3





          +50







          3





          +50



          3




          +50



          $begingroup$

          Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
          $$
          m!left{ matrix{ n cr m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
          quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
          $$

          therefrom we can write our sum as
          $$
          eqalign{
          & S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
          & = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
          sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
          & = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
          $$



          The e.g.f. for $S(n)$ then is
          $$
          sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
          = sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
          } } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
          $$



          Indicating the Touchard polynomials as
          $$
          T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} }
          = e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
          $$

          and the second polynomial as
          $$
          P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
          $$



          we get
          $$
          S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
          $$



          Concerning the polynomial $P_n(x)$ let's evidence that, since
          $$
          {1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
          = sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
          = sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
          $$

          then denoting $P_{, n, , m}(x)$ as
          $$
          P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
          $$

          we easily reach to
          $$
          eqalign{
          & sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
          = e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
          & = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
          $$

          so that we can define $P_n(x)$ in another way as
          $$
          P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
          $$






          share|cite|improve this answer











          $endgroup$



          Through the Eulerian Number of 1st kind $ leftlangle matrix{n cr mcr} rightrangle$ we get the following identities
          $$
          m!left{ matrix{ n cr m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr n - m cr} right)}
          quad Leftrightarrow quad left( {n - m} right)!left{ matrix{ n cr n - m cr} right}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          leftlangle matrix{n cr k cr} rightrangle left( matrix{ k cr m cr} right)}
          $$

          therefrom we can write our sum as
          $$
          eqalign{
          & S(n) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}k!left{ matrix{ n cr k cr} right}} = cr
          & = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( matrix{ n cr k cr} right)k!left{ matrix{ n cr k cr} right}
          sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } = cr
          & = n!sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{ n cr k cr} right}left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)}
          {leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr n - k cr} right)} } right){1 over {left( {n - k} right)!}}} cr}
          $$



          The e.g.f. for $S(n)$ then is
          $$
          sumlimits_{0, le ,n} {S(n){{x^{,n} } over {n!}}}
          = sumlimits_{0, le ,n} {sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle binom{j}{n-k}
          } } right){{x^{,n - k} } over {left( {n - k} right)!}}} }
          $$



          Indicating the Touchard polynomials as
          $$
          T_{,n} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left{ matrix{n cr k cr} right}x^{,k} }
          = e^{, - ,x} sumlimits_{0, le ,k} {{{k^{,n} } over {k!}}x^{,k} }
          $$

          and the second polynomial as
          $$
          P_n (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {left( {sumlimits_{left( {0, le } right),j,left( { le ,n} right)} {
          leftlangle matrix{ n cr j cr} rightrangle left( matrix{ j cr k cr} right)} } right){{x^{,k} } over {k!}}}
          = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {{{left( {n - k} right)!} over {k!}}left{ matrix{ n cr n - k cr} right}x^{,k} }
          $$



          we get
          $$
          S(n) = n!left[ {x^{,n} } right]left( {T_{,n} (x)P_{,n} (x)} right)
          $$



          Concerning the polynomial $P_n(x)$ let's evidence that, since
          $$
          {1 over {1 - yleft( {e^{,x} - 1} right)}} = sumlimits_{0, le ,j} {left( {e^{,x} - 1} right)^{,j} y^{,j} } quad
          = sumlimits_{0, le ,k} {{{e^{,x,k} y^{,k} } over {left( {1 + y} right)^{,k + 1} }};}
          = sumlimits_{0, le ,k} {sumlimits_{0, le ,j} {{{j!} over {k!}}left{ matrix{ k cr j cr} right}x^{,k} y^{,j} } }
          $$

          then denoting $P_{, n, , m}(x)$ as
          $$
          P_{n,,m} (x) = sumlimits_{left( {0, le } right),k,left( { le ,n} right)} {
          left( {n - k} right)!left{ matrix{m cr n - k cr} right}{{x^{,k} } over {k!}}}
          $$

          we easily reach to
          $$
          eqalign{
          & sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {P_{n,,m} (x)y^{,n} {{z^{,m} } over {m!}}} }
          = e^{,x,y} sumlimits_{0, le ,m} {sumlimits_{0, le ,n} {{{n!} over {m!}}left{ matrix{m cr n cr} right}y^{,n} z^{,m} } } = cr
          & = {{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}} cr}
          $$

          so that we can define $P_n(x)$ in another way as
          $$
          P_n (x) = n!left[ {left( {yz} right)^n } right]left( {{{e^{,x,y} } over {1 - yleft( {e^{,z} - 1} right)}}} right)
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 25 at 21:23

























          answered Jan 25 at 17:07









          G CabG Cab

          19.9k31340




          19.9k31340








          • 2




            $begingroup$
            thanks for the appreciation and .. bounty!
            $endgroup$
            – G Cab
            Jan 27 at 15:50






          • 2




            $begingroup$
            Thanks for your help, and @NoviceGeek for offering the bounty.
            $endgroup$
            – Singh
            Jan 27 at 16:12














          • 2




            $begingroup$
            thanks for the appreciation and .. bounty!
            $endgroup$
            – G Cab
            Jan 27 at 15:50






          • 2




            $begingroup$
            Thanks for your help, and @NoviceGeek for offering the bounty.
            $endgroup$
            – Singh
            Jan 27 at 16:12








          2




          2




          $begingroup$
          thanks for the appreciation and .. bounty!
          $endgroup$
          – G Cab
          Jan 27 at 15:50




          $begingroup$
          thanks for the appreciation and .. bounty!
          $endgroup$
          – G Cab
          Jan 27 at 15:50




          2




          2




          $begingroup$
          Thanks for your help, and @NoviceGeek for offering the bounty.
          $endgroup$
          – Singh
          Jan 27 at 16:12




          $begingroup$
          Thanks for your help, and @NoviceGeek for offering the bounty.
          $endgroup$
          – Singh
          Jan 27 at 16:12


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081960%2fclosed-form-for-product-of-stirling-numbers-of-the-second-kind%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

          ts Property 'filter' does not exist on type '{}'

          mat-slide-toggle shouldn't change it's state when I click cancel in confirmation window