Find the volume enclosed by $left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)^2={xover h}$












0












$begingroup$


Find the volume enclosed by $left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)^2={xover h}$, where a, b, c, h are real constants.



My attempt:

I use polar coordinates transformation and get
$$x=a r sinphi costheta$$
$$y=b r sinphi sintheta$$
$$z=c r cosphi$$
The the original equation becomes $r^3={aover h}sinphi costheta$. so I get $rin(0,1)$, $phiin(0,pi)$, $thetain(0,pi/2)$ and $(3pi/2,2pi)$.

and the volume will be: $newcommand{d}{;mathrm{d}}$
$$V=int_0^{pi/2}int_0^piint_0^1 abcr^2sinphi d{r} dphi dtheta+int_{3pi/2}^{2pi}int_0^piint_0^1 abcr^2 sinphi d{r} dphi dtheta$$



I'm not confident with my answer at all. Can anyone show me how to find the volume of this?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Find the volume enclosed by $left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)^2={xover h}$, where a, b, c, h are real constants.



    My attempt:

    I use polar coordinates transformation and get
    $$x=a r sinphi costheta$$
    $$y=b r sinphi sintheta$$
    $$z=c r cosphi$$
    The the original equation becomes $r^3={aover h}sinphi costheta$. so I get $rin(0,1)$, $phiin(0,pi)$, $thetain(0,pi/2)$ and $(3pi/2,2pi)$.

    and the volume will be: $newcommand{d}{;mathrm{d}}$
    $$V=int_0^{pi/2}int_0^piint_0^1 abcr^2sinphi d{r} dphi dtheta+int_{3pi/2}^{2pi}int_0^piint_0^1 abcr^2 sinphi d{r} dphi dtheta$$



    I'm not confident with my answer at all. Can anyone show me how to find the volume of this?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Find the volume enclosed by $left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)^2={xover h}$, where a, b, c, h are real constants.



      My attempt:

      I use polar coordinates transformation and get
      $$x=a r sinphi costheta$$
      $$y=b r sinphi sintheta$$
      $$z=c r cosphi$$
      The the original equation becomes $r^3={aover h}sinphi costheta$. so I get $rin(0,1)$, $phiin(0,pi)$, $thetain(0,pi/2)$ and $(3pi/2,2pi)$.

      and the volume will be: $newcommand{d}{;mathrm{d}}$
      $$V=int_0^{pi/2}int_0^piint_0^1 abcr^2sinphi d{r} dphi dtheta+int_{3pi/2}^{2pi}int_0^piint_0^1 abcr^2 sinphi d{r} dphi dtheta$$



      I'm not confident with my answer at all. Can anyone show me how to find the volume of this?










      share|cite|improve this question











      $endgroup$




      Find the volume enclosed by $left({x^2over a^2}+{y^2over b^2}+{z^2over c^2}right)^2={xover h}$, where a, b, c, h are real constants.



      My attempt:

      I use polar coordinates transformation and get
      $$x=a r sinphi costheta$$
      $$y=b r sinphi sintheta$$
      $$z=c r cosphi$$
      The the original equation becomes $r^3={aover h}sinphi costheta$. so I get $rin(0,1)$, $phiin(0,pi)$, $thetain(0,pi/2)$ and $(3pi/2,2pi)$.

      and the volume will be: $newcommand{d}{;mathrm{d}}$
      $$V=int_0^{pi/2}int_0^piint_0^1 abcr^2sinphi d{r} dphi dtheta+int_{3pi/2}^{2pi}int_0^piint_0^1 abcr^2 sinphi d{r} dphi dtheta$$



      I'm not confident with my answer at all. Can anyone show me how to find the volume of this?







      calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 23 at 9:33









      Anakhand

      259114




      259114










      asked Jan 23 at 9:02









      Yibei HeYibei He

      3139




      3139






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Since your volume is enclosed by the surface $r^3=frac{a}{h}sin{phi}cos{theta}$, the upper limit for the integral over r should be $r=sqrt[3]{frac{a}{h}sin{phi}cos{theta}}$. The volume should be



          $$V=int_0^{pi/2} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi \ + int_{frac{3pi}{2}}^{2pi} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            should I discuss whether $agt h$ since $rin (0,1)$?
            $endgroup$
            – Yibei He
            Jan 26 at 7:07











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084244%2ffind-the-volume-enclosed-by-leftx2-over-a2y2-over-b2z2-over-c2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Since your volume is enclosed by the surface $r^3=frac{a}{h}sin{phi}cos{theta}$, the upper limit for the integral over r should be $r=sqrt[3]{frac{a}{h}sin{phi}cos{theta}}$. The volume should be



          $$V=int_0^{pi/2} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi \ + int_{frac{3pi}{2}}^{2pi} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            should I discuss whether $agt h$ since $rin (0,1)$?
            $endgroup$
            – Yibei He
            Jan 26 at 7:07
















          2












          $begingroup$

          Since your volume is enclosed by the surface $r^3=frac{a}{h}sin{phi}cos{theta}$, the upper limit for the integral over r should be $r=sqrt[3]{frac{a}{h}sin{phi}cos{theta}}$. The volume should be



          $$V=int_0^{pi/2} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi \ + int_{frac{3pi}{2}}^{2pi} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            should I discuss whether $agt h$ since $rin (0,1)$?
            $endgroup$
            – Yibei He
            Jan 26 at 7:07














          2












          2








          2





          $begingroup$

          Since your volume is enclosed by the surface $r^3=frac{a}{h}sin{phi}cos{theta}$, the upper limit for the integral over r should be $r=sqrt[3]{frac{a}{h}sin{phi}cos{theta}}$. The volume should be



          $$V=int_0^{pi/2} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi \ + int_{frac{3pi}{2}}^{2pi} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi$$






          share|cite|improve this answer











          $endgroup$



          Since your volume is enclosed by the surface $r^3=frac{a}{h}sin{phi}cos{theta}$, the upper limit for the integral over r should be $r=sqrt[3]{frac{a}{h}sin{phi}cos{theta}}$. The volume should be



          $$V=int_0^{pi/2} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi \ + int_{frac{3pi}{2}}^{2pi} int_0^{pi}int_0^{sqrt[3]{frac{a}{h}sin{phi}cos{theta}}} mathrm{d}r mathrm{d}phi mathrm{d} theta abcr^2 sin phi$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 27 at 6:18

























          answered Jan 23 at 9:33









          Angela RichardsonAngela Richardson

          5,40411734




          5,40411734












          • $begingroup$
            should I discuss whether $agt h$ since $rin (0,1)$?
            $endgroup$
            – Yibei He
            Jan 26 at 7:07


















          • $begingroup$
            should I discuss whether $agt h$ since $rin (0,1)$?
            $endgroup$
            – Yibei He
            Jan 26 at 7:07
















          $begingroup$
          should I discuss whether $agt h$ since $rin (0,1)$?
          $endgroup$
          – Yibei He
          Jan 26 at 7:07




          $begingroup$
          should I discuss whether $agt h$ since $rin (0,1)$?
          $endgroup$
          – Yibei He
          Jan 26 at 7:07


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084244%2ffind-the-volume-enclosed-by-leftx2-over-a2y2-over-b2z2-over-c2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith