Find exact value of tan when given cos
$begingroup$
Given $cos30 = frac{sqrt3}{2}$ use trigonometric identities to find the exact value of $tanfrac{pi}{3}$
I understand that $cos30 = frac{sqrt3}{2}$ from the standard trig values chart and I know that $frac{pi}{3}$ is 60 degrees and I know the value of it from the same chart. I'm not understanding how to use identities to find the value.
trigonometry
$endgroup$
add a comment |
$begingroup$
Given $cos30 = frac{sqrt3}{2}$ use trigonometric identities to find the exact value of $tanfrac{pi}{3}$
I understand that $cos30 = frac{sqrt3}{2}$ from the standard trig values chart and I know that $frac{pi}{3}$ is 60 degrees and I know the value of it from the same chart. I'm not understanding how to use identities to find the value.
trigonometry
$endgroup$
4
$begingroup$
What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
$endgroup$
– Chris Leary
Jan 19 at 22:06
2
$begingroup$
I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
$endgroup$
– John Omielan
Jan 19 at 22:07
2
$begingroup$
Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
$endgroup$
– jordan_glen
Jan 19 at 22:07
$begingroup$
Sorry missed writing $tan$ of
$endgroup$
– dstarh
Jan 19 at 22:08
add a comment |
$begingroup$
Given $cos30 = frac{sqrt3}{2}$ use trigonometric identities to find the exact value of $tanfrac{pi}{3}$
I understand that $cos30 = frac{sqrt3}{2}$ from the standard trig values chart and I know that $frac{pi}{3}$ is 60 degrees and I know the value of it from the same chart. I'm not understanding how to use identities to find the value.
trigonometry
$endgroup$
Given $cos30 = frac{sqrt3}{2}$ use trigonometric identities to find the exact value of $tanfrac{pi}{3}$
I understand that $cos30 = frac{sqrt3}{2}$ from the standard trig values chart and I know that $frac{pi}{3}$ is 60 degrees and I know the value of it from the same chart. I'm not understanding how to use identities to find the value.
trigonometry
trigonometry
edited Jan 19 at 22:07
dstarh
asked Jan 19 at 22:03
dstarhdstarh
1426
1426
4
$begingroup$
What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
$endgroup$
– Chris Leary
Jan 19 at 22:06
2
$begingroup$
I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
$endgroup$
– John Omielan
Jan 19 at 22:07
2
$begingroup$
Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
$endgroup$
– jordan_glen
Jan 19 at 22:07
$begingroup$
Sorry missed writing $tan$ of
$endgroup$
– dstarh
Jan 19 at 22:08
add a comment |
4
$begingroup$
What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
$endgroup$
– Chris Leary
Jan 19 at 22:06
2
$begingroup$
I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
$endgroup$
– John Omielan
Jan 19 at 22:07
2
$begingroup$
Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
$endgroup$
– jordan_glen
Jan 19 at 22:07
$begingroup$
Sorry missed writing $tan$ of
$endgroup$
– dstarh
Jan 19 at 22:08
4
4
$begingroup$
What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
$endgroup$
– Chris Leary
Jan 19 at 22:06
$begingroup$
What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
$endgroup$
– Chris Leary
Jan 19 at 22:06
2
2
$begingroup$
I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
$endgroup$
– John Omielan
Jan 19 at 22:07
$begingroup$
I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
$endgroup$
– John Omielan
Jan 19 at 22:07
2
2
$begingroup$
Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
$endgroup$
– jordan_glen
Jan 19 at 22:07
$begingroup$
Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
$endgroup$
– jordan_glen
Jan 19 at 22:07
$begingroup$
Sorry missed writing $tan$ of
$endgroup$
– dstarh
Jan 19 at 22:08
$begingroup$
Sorry missed writing $tan$ of
$endgroup$
– dstarh
Jan 19 at 22:08
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$
Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$
$endgroup$
2
$begingroup$
But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
$endgroup$
– user289143
Jan 19 at 22:12
2
$begingroup$
But $x$ is not $pi/6$, but rather $pi/3$.
$endgroup$
– jordan_glen
Jan 19 at 22:13
add a comment |
$begingroup$
Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$
$endgroup$
add a comment |
$begingroup$
Just to use another elementary way, which shows all the passages:
$$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$
The value of $cos(30)$ you know it.
The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.
Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.
Now you can find $tan(60)$.
$endgroup$
add a comment |
$begingroup$
begin{align}
&color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
&=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
&=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
end{align}
$$therefore~tanleft(fracpi3right)=sqrt3$$
$endgroup$
add a comment |
$begingroup$
$sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.
Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$
$endgroup$
add a comment |
$begingroup$
Assume $x = fracpi6$, thus $fracpi3 = 2x$
$$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$
Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
$$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$
$$therefore~tanleft(fracpi3right)=sqrt3$$
Trigonometric Identities used are:
$$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
$$cosleft(2xright) = 2cos^2left(xright)-1$$
$$cos^2left(xright)+sin^2left(xright)=1$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079899%2ffind-exact-value-of-tan-when-given-cos%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$
Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$
$endgroup$
2
$begingroup$
But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
$endgroup$
– user289143
Jan 19 at 22:12
2
$begingroup$
But $x$ is not $pi/6$, but rather $pi/3$.
$endgroup$
– jordan_glen
Jan 19 at 22:13
add a comment |
$begingroup$
Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$
Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$
$endgroup$
2
$begingroup$
But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
$endgroup$
– user289143
Jan 19 at 22:12
2
$begingroup$
But $x$ is not $pi/6$, but rather $pi/3$.
$endgroup$
– jordan_glen
Jan 19 at 22:13
add a comment |
$begingroup$
Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$
Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$
$endgroup$
Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$
Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$
edited Jan 19 at 22:24
answered Jan 19 at 22:08
PeterPeter
48.1k1139133
48.1k1139133
2
$begingroup$
But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
$endgroup$
– user289143
Jan 19 at 22:12
2
$begingroup$
But $x$ is not $pi/6$, but rather $pi/3$.
$endgroup$
– jordan_glen
Jan 19 at 22:13
add a comment |
2
$begingroup$
But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
$endgroup$
– user289143
Jan 19 at 22:12
2
$begingroup$
But $x$ is not $pi/6$, but rather $pi/3$.
$endgroup$
– jordan_glen
Jan 19 at 22:13
2
2
$begingroup$
But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
$endgroup$
– user289143
Jan 19 at 22:12
$begingroup$
But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
$endgroup$
– user289143
Jan 19 at 22:12
2
2
$begingroup$
But $x$ is not $pi/6$, but rather $pi/3$.
$endgroup$
– jordan_glen
Jan 19 at 22:13
$begingroup$
But $x$ is not $pi/6$, but rather $pi/3$.
$endgroup$
– jordan_glen
Jan 19 at 22:13
add a comment |
$begingroup$
Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$
$endgroup$
add a comment |
$begingroup$
Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$
$endgroup$
add a comment |
$begingroup$
Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$
$endgroup$
Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$
answered Jan 19 at 22:11
user289143user289143
1,002313
1,002313
add a comment |
add a comment |
$begingroup$
Just to use another elementary way, which shows all the passages:
$$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$
The value of $cos(30)$ you know it.
The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.
Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.
Now you can find $tan(60)$.
$endgroup$
add a comment |
$begingroup$
Just to use another elementary way, which shows all the passages:
$$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$
The value of $cos(30)$ you know it.
The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.
Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.
Now you can find $tan(60)$.
$endgroup$
add a comment |
$begingroup$
Just to use another elementary way, which shows all the passages:
$$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$
The value of $cos(30)$ you know it.
The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.
Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.
Now you can find $tan(60)$.
$endgroup$
Just to use another elementary way, which shows all the passages:
$$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$
The value of $cos(30)$ you know it.
The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.
Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.
Now you can find $tan(60)$.
answered Jan 19 at 22:17


Von NeumannVon Neumann
16.4k72545
16.4k72545
add a comment |
add a comment |
$begingroup$
begin{align}
&color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
&=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
&=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
end{align}
$$therefore~tanleft(fracpi3right)=sqrt3$$
$endgroup$
add a comment |
$begingroup$
begin{align}
&color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
&=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
&=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
end{align}
$$therefore~tanleft(fracpi3right)=sqrt3$$
$endgroup$
add a comment |
$begingroup$
begin{align}
&color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
&=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
&=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
end{align}
$$therefore~tanleft(fracpi3right)=sqrt3$$
$endgroup$
begin{align}
&color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
&=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
&=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
end{align}
$$therefore~tanleft(fracpi3right)=sqrt3$$
answered Jan 19 at 22:24
mrtaurhomrtaurho
5,59051440
5,59051440
add a comment |
add a comment |
$begingroup$
$sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.
Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$
$endgroup$
add a comment |
$begingroup$
$sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.
Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$
$endgroup$
add a comment |
$begingroup$
$sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.
Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$
$endgroup$
$sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.
Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$
edited Jan 19 at 22:16
answered Jan 19 at 22:11
jordan_glenjordan_glen
1
1
add a comment |
add a comment |
$begingroup$
Assume $x = fracpi6$, thus $fracpi3 = 2x$
$$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$
Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
$$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$
$$therefore~tanleft(fracpi3right)=sqrt3$$
Trigonometric Identities used are:
$$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
$$cosleft(2xright) = 2cos^2left(xright)-1$$
$$cos^2left(xright)+sin^2left(xright)=1$$
$endgroup$
add a comment |
$begingroup$
Assume $x = fracpi6$, thus $fracpi3 = 2x$
$$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$
Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
$$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$
$$therefore~tanleft(fracpi3right)=sqrt3$$
Trigonometric Identities used are:
$$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
$$cosleft(2xright) = 2cos^2left(xright)-1$$
$$cos^2left(xright)+sin^2left(xright)=1$$
$endgroup$
add a comment |
$begingroup$
Assume $x = fracpi6$, thus $fracpi3 = 2x$
$$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$
Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
$$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$
$$therefore~tanleft(fracpi3right)=sqrt3$$
Trigonometric Identities used are:
$$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
$$cosleft(2xright) = 2cos^2left(xright)-1$$
$$cos^2left(xright)+sin^2left(xright)=1$$
$endgroup$
Assume $x = fracpi6$, thus $fracpi3 = 2x$
$$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$
Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
$$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$
$$therefore~tanleft(fracpi3right)=sqrt3$$
Trigonometric Identities used are:
$$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
$$cosleft(2xright) = 2cos^2left(xright)-1$$
$$cos^2left(xright)+sin^2left(xright)=1$$
edited Jan 19 at 23:56
answered Jan 19 at 23:46
Mathew MahindaratneMathew Mahindaratne
536212
536212
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079899%2ffind-exact-value-of-tan-when-given-cos%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
$endgroup$
– Chris Leary
Jan 19 at 22:06
2
$begingroup$
I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
$endgroup$
– John Omielan
Jan 19 at 22:07
2
$begingroup$
Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
$endgroup$
– jordan_glen
Jan 19 at 22:07
$begingroup$
Sorry missed writing $tan$ of
$endgroup$
– dstarh
Jan 19 at 22:08