Find exact value of tan when given cos












0












$begingroup$


Given $cos30 = frac{sqrt3}{2}$ use trigonometric identities to find the exact value of $tanfrac{pi}{3}$



I understand that $cos30 = frac{sqrt3}{2}$ from the standard trig values chart and I know that $frac{pi}{3}$ is 60 degrees and I know the value of it from the same chart. I'm not understanding how to use identities to find the value.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
    $endgroup$
    – Chris Leary
    Jan 19 at 22:06






  • 2




    $begingroup$
    I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
    $endgroup$
    – John Omielan
    Jan 19 at 22:07






  • 2




    $begingroup$
    Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
    $endgroup$
    – jordan_glen
    Jan 19 at 22:07










  • $begingroup$
    Sorry missed writing $tan$ of
    $endgroup$
    – dstarh
    Jan 19 at 22:08
















0












$begingroup$


Given $cos30 = frac{sqrt3}{2}$ use trigonometric identities to find the exact value of $tanfrac{pi}{3}$



I understand that $cos30 = frac{sqrt3}{2}$ from the standard trig values chart and I know that $frac{pi}{3}$ is 60 degrees and I know the value of it from the same chart. I'm not understanding how to use identities to find the value.










share|cite|improve this question











$endgroup$








  • 4




    $begingroup$
    What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
    $endgroup$
    – Chris Leary
    Jan 19 at 22:06






  • 2




    $begingroup$
    I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
    $endgroup$
    – John Omielan
    Jan 19 at 22:07






  • 2




    $begingroup$
    Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
    $endgroup$
    – jordan_glen
    Jan 19 at 22:07










  • $begingroup$
    Sorry missed writing $tan$ of
    $endgroup$
    – dstarh
    Jan 19 at 22:08














0












0








0





$begingroup$


Given $cos30 = frac{sqrt3}{2}$ use trigonometric identities to find the exact value of $tanfrac{pi}{3}$



I understand that $cos30 = frac{sqrt3}{2}$ from the standard trig values chart and I know that $frac{pi}{3}$ is 60 degrees and I know the value of it from the same chart. I'm not understanding how to use identities to find the value.










share|cite|improve this question











$endgroup$




Given $cos30 = frac{sqrt3}{2}$ use trigonometric identities to find the exact value of $tanfrac{pi}{3}$



I understand that $cos30 = frac{sqrt3}{2}$ from the standard trig values chart and I know that $frac{pi}{3}$ is 60 degrees and I know the value of it from the same chart. I'm not understanding how to use identities to find the value.







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 19 at 22:07







dstarh

















asked Jan 19 at 22:03









dstarhdstarh

1426




1426








  • 4




    $begingroup$
    What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
    $endgroup$
    – Chris Leary
    Jan 19 at 22:06






  • 2




    $begingroup$
    I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
    $endgroup$
    – John Omielan
    Jan 19 at 22:07






  • 2




    $begingroup$
    Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
    $endgroup$
    – jordan_glen
    Jan 19 at 22:07










  • $begingroup$
    Sorry missed writing $tan$ of
    $endgroup$
    – dstarh
    Jan 19 at 22:08














  • 4




    $begingroup$
    What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
    $endgroup$
    – Chris Leary
    Jan 19 at 22:06






  • 2




    $begingroup$
    I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
    $endgroup$
    – John Omielan
    Jan 19 at 22:07






  • 2




    $begingroup$
    Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
    $endgroup$
    – jordan_glen
    Jan 19 at 22:07










  • $begingroup$
    Sorry missed writing $tan$ of
    $endgroup$
    – dstarh
    Jan 19 at 22:08








4




4




$begingroup$
What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
$endgroup$
– Chris Leary
Jan 19 at 22:06




$begingroup$
What is "The" fundamental trigonometric identity? Once you know the sine of the angle you can easily compute the tangent.
$endgroup$
– Chris Leary
Jan 19 at 22:06




2




2




$begingroup$
I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
$endgroup$
– John Omielan
Jan 19 at 22:07




$begingroup$
I don't understand where the "$tan$" part in the question title comes in based on what is written in the question text. Is something missing?
$endgroup$
– John Omielan
Jan 19 at 22:07




2




2




$begingroup$
Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
$endgroup$
– jordan_glen
Jan 19 at 22:07




$begingroup$
Given your title, are you rather asking, in the body of your post, to find the exact value of $tanleft(pi/3right)$?
$endgroup$
– jordan_glen
Jan 19 at 22:07












$begingroup$
Sorry missed writing $tan$ of
$endgroup$
– dstarh
Jan 19 at 22:08




$begingroup$
Sorry missed writing $tan$ of
$endgroup$
– dstarh
Jan 19 at 22:08










6 Answers
6






active

oldest

votes


















4












$begingroup$

Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$



Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
    $endgroup$
    – user289143
    Jan 19 at 22:12






  • 2




    $begingroup$
    But $x$ is not $pi/6$, but rather $pi/3$.
    $endgroup$
    – jordan_glen
    Jan 19 at 22:13



















2












$begingroup$

Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Just to use another elementary way, which shows all the passages:



    $$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$



    The value of $cos(30)$ you know it.



    The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.



    Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.



    Now you can find $tan(60)$.






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      begin{align}
      &color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
      &=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
      &=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
      end{align}




      $$therefore~tanleft(fracpi3right)=sqrt3$$







      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        $sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.



        Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$






        share|cite|improve this answer











        $endgroup$





















          0












          $begingroup$

          Assume $x = fracpi6$, thus $fracpi3 = 2x$



          $$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$



          Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
          $$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$




          $$therefore~tanleft(fracpi3right)=sqrt3$$




          Trigonometric Identities used are:
          $$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
          $$cosleft(2xright) = 2cos^2left(xright)-1$$
          $$cos^2left(xright)+sin^2left(xright)=1$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079899%2ffind-exact-value-of-tan-when-given-cos%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            6 Answers
            6






            active

            oldest

            votes








            6 Answers
            6






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$



            Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$






            share|cite|improve this answer











            $endgroup$









            • 2




              $begingroup$
              But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
              $endgroup$
              – user289143
              Jan 19 at 22:12






            • 2




              $begingroup$
              But $x$ is not $pi/6$, but rather $pi/3$.
              $endgroup$
              – jordan_glen
              Jan 19 at 22:13
















            4












            $begingroup$

            Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$



            Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$






            share|cite|improve this answer











            $endgroup$









            • 2




              $begingroup$
              But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
              $endgroup$
              – user289143
              Jan 19 at 22:12






            • 2




              $begingroup$
              But $x$ is not $pi/6$, but rather $pi/3$.
              $endgroup$
              – jordan_glen
              Jan 19 at 22:13














            4












            4








            4





            $begingroup$

            Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$



            Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$






            share|cite|improve this answer











            $endgroup$



            Upto the sign, you can calculate the tan-value as $$tan(x)=frac{sqrt{1-cos^2(x)}}{cos(x)}$$



            Also note $$cos(2x)=2cos^2(x)-1$$ which allows you to calculate $cos(frac{pi}{3})$ from $cos(frac{pi}{6})$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 19 at 22:24

























            answered Jan 19 at 22:08









            PeterPeter

            48.1k1139133




            48.1k1139133








            • 2




              $begingroup$
              But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
              $endgroup$
              – user289143
              Jan 19 at 22:12






            • 2




              $begingroup$
              But $x$ is not $pi/6$, but rather $pi/3$.
              $endgroup$
              – jordan_glen
              Jan 19 at 22:13














            • 2




              $begingroup$
              But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
              $endgroup$
              – user289143
              Jan 19 at 22:12






            • 2




              $begingroup$
              But $x$ is not $pi/6$, but rather $pi/3$.
              $endgroup$
              – jordan_glen
              Jan 19 at 22:13








            2




            2




            $begingroup$
            But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
            $endgroup$
            – user289143
            Jan 19 at 22:12




            $begingroup$
            But the question is asking $tanfrac{pi}{3}$ and you have $cos frac{pi}{6}$
            $endgroup$
            – user289143
            Jan 19 at 22:12




            2




            2




            $begingroup$
            But $x$ is not $pi/6$, but rather $pi/3$.
            $endgroup$
            – jordan_glen
            Jan 19 at 22:13




            $begingroup$
            But $x$ is not $pi/6$, but rather $pi/3$.
            $endgroup$
            – jordan_glen
            Jan 19 at 22:13











            2












            $begingroup$

            Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$






                share|cite|improve this answer









                $endgroup$



                Now $$tanfrac{pi}{3}=frac{sinfrac{pi}{3}}{cosfrac{pi}{3}}=frac{cosfrac{pi}{6}}{sin frac{pi}{6}}=frac{cos frac{pi}{6}}{sqrt{1-cos^2frac{pi}{6}}}=frac{frac{sqrt{3}}{2}}{sqrt{1-frac{3}{4}}}=frac{sqrt{3}}{2}cdot frac{1}{sqrt{frac{1}{4}}}=sqrt{3}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 19 at 22:11









                user289143user289143

                1,002313




                1,002313























                    1












                    $begingroup$

                    Just to use another elementary way, which shows all the passages:



                    $$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$



                    The value of $cos(30)$ you know it.



                    The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.



                    Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.



                    Now you can find $tan(60)$.






                    share|cite|improve this answer









                    $endgroup$


















                      1












                      $begingroup$

                      Just to use another elementary way, which shows all the passages:



                      $$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$



                      The value of $cos(30)$ you know it.



                      The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.



                      Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.



                      Now you can find $tan(60)$.






                      share|cite|improve this answer









                      $endgroup$
















                        1












                        1








                        1





                        $begingroup$

                        Just to use another elementary way, which shows all the passages:



                        $$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$



                        The value of $cos(30)$ you know it.



                        The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.



                        Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.



                        Now you can find $tan(60)$.






                        share|cite|improve this answer









                        $endgroup$



                        Just to use another elementary way, which shows all the passages:



                        $$cos(60) = cos(30+30) = cos(30)cos(30) - sin(30)sin(30)$$



                        The value of $cos(30)$ you know it.



                        The value of $sin(30)$ is derived from $cos^2 + sin^2 = 1$.



                        Again, once you found $cos(60)$ you get the value of $sin(60)$ for free.



                        Now you can find $tan(60)$.







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Jan 19 at 22:17









                        Von NeumannVon Neumann

                        16.4k72545




                        16.4k72545























                            1












                            $begingroup$

                            begin{align}
                            &color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
                            &=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
                            &=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
                            end{align}




                            $$therefore~tanleft(fracpi3right)=sqrt3$$







                            share|cite|improve this answer









                            $endgroup$


















                              1












                              $begingroup$

                              begin{align}
                              &color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
                              &=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
                              &=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
                              end{align}




                              $$therefore~tanleft(fracpi3right)=sqrt3$$







                              share|cite|improve this answer









                              $endgroup$
















                                1












                                1








                                1





                                $begingroup$

                                begin{align}
                                &color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
                                &=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
                                &=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
                                end{align}




                                $$therefore~tanleft(fracpi3right)=sqrt3$$







                                share|cite|improve this answer









                                $endgroup$



                                begin{align}
                                &color{red}{tanleft(fracpi3right)}=frac{sinleft(fracpi3right)}{cosleft(fracpi3right)}=frac{sqrt{1-cos^2left(fracpi3right)}}{cosleft(fracpi3right)}=frac{sqrt{1-left(2color{blue}{cosleft(fracpi6right)}^2-1right)^2}}{2color{blue}{cosleft(fracpi6right)}^2-1}\
                                &=frac{sqrt{1-left(2left(color{blue}{frac{sqrt 3}2}right)^2-1right)^2}}{2left(color{blue}{frac{sqrt 3}2}right)^2-1}=frac{sqrt{1-left(2frac34-1right)^2}}{2frac34-1}=frac{sqrt{1-left(frac12right)^2}}{frac12}\
                                &=frac{sqrt{frac34}}{frac12}=frac{frac12sqrt3}{frac12}=color{red}{sqrt 3}
                                end{align}




                                $$therefore~tanleft(fracpi3right)=sqrt3$$








                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Jan 19 at 22:24









                                mrtaurhomrtaurho

                                5,59051440




                                5,59051440























                                    0












                                    $begingroup$

                                    $sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.



                                    Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$






                                    share|cite|improve this answer











                                    $endgroup$


















                                      0












                                      $begingroup$

                                      $sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.



                                      Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$






                                      share|cite|improve this answer











                                      $endgroup$
















                                        0












                                        0








                                        0





                                        $begingroup$

                                        $sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.



                                        Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$






                                        share|cite|improve this answer











                                        $endgroup$



                                        $sin(pi/3) = sqrt 3/2,$ and $cos(pi/3) = 1/2$.



                                        Therefore, $$tan(pi/3) = dfrac{sinleft(frac pi 3right)}{cosleft(frac pi 3right)} = dfrac {dfrac{sqrt 3}2}{dfrac 12}=sqrt 3$$







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited Jan 19 at 22:16

























                                        answered Jan 19 at 22:11









                                        jordan_glenjordan_glen

                                        1




                                        1























                                            0












                                            $begingroup$

                                            Assume $x = fracpi6$, thus $fracpi3 = 2x$



                                            $$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$



                                            Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
                                            $$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$




                                            $$therefore~tanleft(fracpi3right)=sqrt3$$




                                            Trigonometric Identities used are:
                                            $$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
                                            $$cosleft(2xright) = 2cos^2left(xright)-1$$
                                            $$cos^2left(xright)+sin^2left(xright)=1$$






                                            share|cite|improve this answer











                                            $endgroup$


















                                              0












                                              $begingroup$

                                              Assume $x = fracpi6$, thus $fracpi3 = 2x$



                                              $$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$



                                              Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
                                              $$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$




                                              $$therefore~tanleft(fracpi3right)=sqrt3$$




                                              Trigonometric Identities used are:
                                              $$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
                                              $$cosleft(2xright) = 2cos^2left(xright)-1$$
                                              $$cos^2left(xright)+sin^2left(xright)=1$$






                                              share|cite|improve this answer











                                              $endgroup$
















                                                0












                                                0








                                                0





                                                $begingroup$

                                                Assume $x = fracpi6$, thus $fracpi3 = 2x$



                                                $$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$



                                                Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
                                                $$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$




                                                $$therefore~tanleft(fracpi3right)=sqrt3$$




                                                Trigonometric Identities used are:
                                                $$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
                                                $$cosleft(2xright) = 2cos^2left(xright)-1$$
                                                $$cos^2left(xright)+sin^2left(xright)=1$$






                                                share|cite|improve this answer











                                                $endgroup$



                                                Assume $x = fracpi6$, thus $fracpi3 = 2x$



                                                $$tanleft(2xright) = frac{sinleft(2xright)}{cosleft(2xright)} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sinleft(xright)cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1}$$



                                                Since, $cosleft(xright)=cosleft(fracpi6right)=frac{sqrt 3}2$, substituting that on above equation, you'd get:
                                                $$tanleft(2xright) = frac{2sqrt{left(1-cos^2left(xright)right)}cosleft(xright)}{2cos^2left(xright)-1} = frac{2sqrt{left(1-frac 34right)}left(frac{sqrt{3}}2right)}{2times frac 34-1} = sqrt{3}$$




                                                $$therefore~tanleft(fracpi3right)=sqrt3$$




                                                Trigonometric Identities used are:
                                                $$sinleft(2xright) = 2sinleft(xright)cosleft(xright)$$
                                                $$cosleft(2xright) = 2cos^2left(xright)-1$$
                                                $$cos^2left(xright)+sin^2left(xright)=1$$







                                                share|cite|improve this answer














                                                share|cite|improve this answer



                                                share|cite|improve this answer








                                                edited Jan 19 at 23:56

























                                                answered Jan 19 at 23:46









                                                Mathew MahindaratneMathew Mahindaratne

                                                536212




                                                536212






























                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematics Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079899%2ffind-exact-value-of-tan-when-given-cos%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    MongoDB - Not Authorized To Execute Command

                                                    How to fix TextFormField cause rebuild widget in Flutter

                                                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith